ITEM OPPORTUNITY SYNOPSIS

Scouting Number:	2024-218
Name of the item to be scouted:	Panelboards
State item to be used in:	Vermont
Describe the Item:	
Please describe the item application/the end use of the item.	Distribution equipment for power distribution throughout the building. Sizing varies per panel amperage, voltage and quantity of overcurrent protection devices.
Supplier Information:	
Type of Supplier Being Sought (select from the list below):	
Manufacturer	x
Contract Manufacturer	
Distributor	
Other (Please Specify)	
Reason for Scouting Submission (select from the list below)	
2nd Supplier	
Price	
Re-Shore	
Past supplier no longer available	
New Product Startup	
BABA	X
Other (Please Specify)	
Summary of Technical Specifications and Performance Requirements:	
Describe the manufacturing processes (elaborate to provide as much detail as possible)	The panelboard consists of an enclosure and busbar assembly. The busbar assembly includes copper busses that are tied together with metal clips, bolts and rubber insulations. The busbar assembly is then screwed in placed within a fabricated sheet metal enclosure. Circuit breakers are snapped into the buses to complete the panelboard assembly.
Provide dimensions / size / tolerances / performance specifications of the item	Refer to attached specifications section 264400 for panelboard information
List required materials needed to make the product, including materials of product components, if applicable	Fabricated sheet metals for enclosures, copper busbars, rubber insulators, and thermal magnetic circuit breakers.
Are there applicable certification requirements?	
Yes	x
No	
Please explain:	IEEE ISO 9001 UL Other ANSI, ASTM, ADA, AEIC, CSA, IEEE, EEI, EPA, FM, FCC, FIPS Pub 94, ICEA, IBC, IEC, IECC, OSHA, NEC, NESC, NEMA, NFPA
Are there any applicable regulations that apply to the production of this item?	
Yes	X
No	
Please explain:	See provided specifications 264400 (1.4) QUALITY ASSURANCE for more information.
Are there any other standards / requirements?	
Yes	
No	x
Please explain:	
NAICS CODES:	
NAICS 1	335313 Switchgear and switchboard apparatus manufacturing
NAICS 2	
Additional Comments:	
Additional technical comments:	
Volume and Pricing:	
Estimated Potential Business Volume (i.e. \#units per day, month, year):	10 Panelboards will be needed for this project.

Estimated Target Price/Unit Cost Information:	Panelboards - Price ranges from \$700-\$10,000
Delivery Requirements:	Construction is scheduled to start in February of 2025
When is it needed by? (Immediate, $\mathbf{3 0}$ days, $\mathbf{6}$ months, etc.)	Palletized or individually wrapped
Describe packaging requirements (i.e. individually/group packaging, etc.)	Norwich University, Northfield, VT
Where will this item be shipped?	Contact information for questions including BABA/Buy American compliance: Jones Architecture Alya Staber alya@jonesarch.com Please copy scouting@nist.gov on all correspondence.
Additional Comments:	

SECTION 264400

SWITCHBOARDS AND PANELBOARDS

PART 1 - GENERAL

1.1 WORK INCLUDED

A. Provide indicated switchboards and panelboards.
B. Provide switchboard barriers between sections, and protective covers on all panelboard (incoming) terminals to isolate live connections.

1.2 RELATED DOCUMENTS

A. Drawings and general provisions of Contract, including General and Supplementary General Conditions and other Division 01 specification sections, apply to this Section and to all Contractors, Subcontractors, or other persons supplying materials and/or labor, entering into the Project site and/or premises, directly, or indirectly.
B. The Specifications and Drawings are intended to be complementary. A particular section, paragraph or heading in a Division may not describe each and every detail concerning work to be done and materials to be furnished. The Drawings are diagrammatic and may not show all of the work required or all construction details. Dimensions are shown for critical areas only; all dimensions and actual placements are to be verified in the field. It is to be understood that the best trade practices of the Division will prevail. It remains the responsibility of the Contractor or Subcontractor to provide all items, equipment, construction, and services required to the proper execution and completion of the Work.
C. Reference listings are provided as a convenience to the Contractor or Subcontractor providing the Work of this Section and may not contain all the requirements affecting this Section. It remains the responsibility of the Contractor or Subcontractor to locate and comply with all requirements of the Contract Documents.

1.3 SUBMITTALS

A. Submit product data in accordance with Section 260100.
B. Submit as a minimum data including current, voltage and interrupting ratings and layout drawing including dimensions.
C. Submit time-current curves for all overcurrent protective devices with applicable settings indicated.
D. Submit complete surge protection specifications.
E. Submit test results in accordance with Section 260800.
F. Certifications: Provide manufacturer's certification that all applicable products were manufactured in United States and meet the requirements of the Build America, Buy America Act (BABA) (part of Infrastructure Investment and Jobs Act).

1.4 QUALITY ASSURANCE

A. All specified items or systems shall be designed, manufactured, tested, and installed in compliance with applicable provisions of all governing codes, rules, laws, and ordinances in accordance with Section 260100.

1. If there is a conflict between applicable documents, then the more stringent requirement shall apply. All documents listed are believed to be the most current releases of the documents. The Contractor has the responsibility to determine and adhere to all applicable documents and to the most recent release when developing the proposal for installation.
2. This document does not replace any code, either partially or wholly. The Contractor must be aware of local codes that may impact this project.
3. The minimum AIC rating of equipment shall be as indicated on the Drawings. It shall be the responsibility of the equipment supplier to coordinate all secondary breaker interrupting capacities and to indicate them on applicable submittals. AIC ratings of equipment shall be based on a fully rated system.
B. Build America, Buy America Act (BABA) Requirements: All applicable products shall be manufactured in United States and shall meet the requirements of the Build America, Buy America Act (BABA) (part of Infrastructure Investment and Jobs Act).

PART 2 - PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS

A. Subject to compliance with requirements, provide products by the following:

1. Switchboards and circuit breaker panelboards:
a. Siemens
b. General Electric
c. Square D
d. Cutler-Hammer
A. Substitutions: Items of equal quality, function and performance may be proposed for substituting by following the procedures outlined in Section 260100.

2.2 SWITCHBOARD

A. Provide dead front, NEMA 1, front accessible, rear aligned, self-supporting, group mounted distribution switchboard constructed of heavy-gauge steel. Unit shall be braced for symmetrical amperes as indicated on the drawings. Adequate lifting means shall be provided.
B. Switchboard busbars shall be high conductivity copper with bolted connections between sections and shall have the capability for future extension to an additional section. Provide full capacity neutral. A ground bus shall be provided in each switchboard section.
C. Circuit breakers shall be manufactured such that amperages shall be clearly visible on all breakers (stamped or labeled) without having to remove any components of the switchboard to obtain this information.

D. Main Section:

1. The main switchboard section shall have provisions for feeder conductor terminations and contain current and voltage meters and the service entrance circuit breaker.
2. The main section shall be bottom or top fed as needed, capable of terminating the indicated feeder cables. Cable connectors shall be mechanical compression style and suitable for the intended purpose.
3. Voltage and current meters shall have phase selector switches.
4. Main overcurrent device shall be a draw out molded case [power] circuit breaker rated as indicated on the Drawings, suitable for service entrance applications with electronic tripping means and AIC rating as indicated on the drawings. Breaker shall have adjustable long and short time trip settings.
5. The main service circuit breaker shall be equipped with a protective trip unit system to protect against overloads, short circuits and ground faults. The protective trip unit shall consist of a solid-state, microprocessor-based programmer, tripping means, current sensors, power supply and other devices required for proper operation. Trip unit shall be equipped with adjustable long-time, short-time, instantaneous and ground fault.
6. All circuit breakers rated 1200 amps or larger shall include an Arc Flash Reduction Maintenance System as required by NEC 240.87. The Arc Flash Reduction Maintenance System Technology shall be provided in a system that shall reduce the trip unit Instantaneous pickup value when activated. The Arc Flash Reduction Maintenance System shall not compromise breaker phase protection even when enabled. Once the unit is disabled, the recalibration of trip unit phase protection shall not be required. Activation and deactivation of the Arc Flash Reduction Maintenance trip setting shall be accomplished without opening the circuit breaker door and exposing operators to energized parts. The device shall provide a clearing time of 0.04 seconds, adjustable with a minimum of five settings ranging from 2.5 X to 10 X of the sensor value. The Arc Flash Reduction Maintenance System shall be provided with a switchgear panel mounted enable padlockable selector switch and indication via pilot light. The selector switch and pilot light shall be clearly identified to describe its use and function using laminated phenolic nameplates.
7. Service entrance switchboards shall be provided with voltage surge protection rated and suitable for the service.
8. The main section cabinet shall be provided with barriers placed such that no uninsulated, ungrounded service busbar or service terminal is exposed to inadvertent contact by persons or maintenance equipment while servicing the distribution section cabinet.
E. Surge Suppression:
9. Suppressors shall be listed in accordance with UL 1449 and UL 1283.
10. Suppressors shall provide redundant suppression modules between each phase conductor and the neutral conductor, between each phase conductor and the ground and between the neutral conductor and ground.
11. Suppressor manufacturer shall provide certified test data confirming a "fail-short" failure mode.
12. Visible indication of proper suppressor connection and operation shall be provided. The indicator lights shall indicate which phase as well as which module is fully operable.
13. The suppressor shall incorporate copper bus bars for the surge current path. Surge current diversion modules shall use bolted connections to the bus bars for reliable low impedance connections.
14. Suppressors shall meet or exceed the following criteria:
a. Maximum single impulse current rating shall be no less than 240 kA per phase.
b. Pulse life test: Capable of protecting against and surviving 5000 ANSI/IEEE C62.41 Category C transients without failure or degradation of UL 1449 clamp voltage by more than 10%.
c. UL 1449 clamping voltage must not exceed the following:

Voltage	L-N	L-G	N-G	L-L
$208 / 120$	330 V	330 V	330 V	700 V

d. The ANSI/IEEE C62.41-1991 Category C3 clamping voltage shall not exceed the following:

Voltage	L-N	L-G	N-G
$208 / 120$	520 V	520 V	520 V

7. The SPD shall be constructed using surge current modules (MOV based). Each module shall be fused with user-replaceable 200,000 AIC rated fuses. The status of each module shall be monitored on the front of the SPD enclosure as well as on the module.
8. The SPD shall be installed internal to electrical distribution equipment by the electrical distribution equipment manufacturer.
9. The SPD shall be equipped with an audible alarm which shall actuate when any one of the surge current modules has failed. An alarm on/off switch shall be provided to silence the alarm and an alarm push-to-test switch shall be provided to test the alarm. Both switches and audible alarm shall be located on the front panel of the switchboard.
10. The suppressor shall have a response time no greater than 0.5 nanoseconds for any of the individual protection modes.
11. The suppressor will have a warranty for a period of five years, incorporating unlimited replacements of suppressor parts if they are destroyed by transients during the warranty period.
12. The suppressor shall include an internal UL listed disconnect switch.
F. Distribution Section:
13. The switchboard distribution section shall contain distribution circuit breakers as indicated on the Drawings.
14. The vertical main bus shall be full length furnished with provisions for future branch devices so that the entire available vertical space may be utilized.
15. The distribution section shall have provisions for a future additional distribution section. This includes appropriate space and bolt holes on the horizontal main bus and side panels.
16. Provide a minimum of two (2) 400A and (2) 250A full-size three-pole spaces for future equipment and additional spaces as indicated on the Drawings.
a. All feeders breakers shall be Electronic Trip Circuit Breakers:
b. Basis of Design: "PowerPact H-, J-, L-, P- and R-Frame" (200 amperes to 3000 amperes) as manufactured by Square D by Schneider Electric.
c. Current trip ratings shall be as indicated on the Drawings.
d. Circuit breaker trip system shall be a MICROLOGIC electronic trip unit with true RMS sensing.
e. Current transformers shall be used to ensure accurate measurements from low current up to high currents.
f. Electronic trip unit shall be fitted with thermal imaging.
g. The following monitoring functions shall be integral parts of electronic trip units:
1) A test connector shall be installed for checks on electronic and tripping mechanism operation using an external device.
2) LED for load indication at 105 percent.
3) LED for load indication at 90 percent of load for applications 600A and smaller.
4) LED for visual verification of protection circuit functionality for applications 600A or smaller.
5) Optional: LED for trip indication for applications above 600A.
h. MICROLOGIC trip unit functions shall consist of adjustable protection settings with the capability to be set and read locally by rotating a switch.
6) Long-time pick-up shall allow for adjustment to nine (9) long-time pick-up settings. This adjustment must be at least from 0.4 to 1 times the sensor plug (In), with finer adjustments available for more precise settings to match the application.
7) Adjustable long-time delay shall be in nine (9) bands. At six times Ir, from 0.5 to 24 seconds above 600A, and 0.5 to 16 seconds for 600A and below.
8) Short-time pick-up shall allow for nine (9) settings from 1.5 to 10 times Ir.
9) Short-time delay shall be in nine (9) bands from $0.1-0.4 \mathrm{I} 2 \mathrm{t} \mathrm{ON}$ and $0-0.4 \mathrm{I}$ 2 t OFF.
10) Instantaneous settings on the trip units with LSI protection shall be available in nine (9) bands.
11) Above 600A, from 2 to 15 times In
a) 600 A , from 1.5 to 11 times In
b) 400 A from 1.5 to 12 times In
c) 250 A and below, from 1.5 to 15 times In
i. It shall be possible to fit the trip unit with a seal to prevent unauthorized access to the settings in accordance with NEC Section 240-6(b).
j. Trip unit shall provide local trip indication and capability to locally and remotely indicate reason for trip, i.e., overload, short circuit, or ground fault.
G. Ground Fault Protection:
1. Switchboard main shall have integral zero sequence ground fault protection with adjustable pickup current and time delay. The ground fault relay shall initiate an instantaneous trip when a fault occurs downstream of it and will block all upstream devices from tripping for a preset adjustable delay time. This will allow the downstream breaker to clear the fault and provide system coordination.

H. Phase Failure Relay:

1. Provide protection against phase failure of three-phase supply by opening main electronic trip circuit breaker. Provide three-phase sensing relay, control power transformer and control fuses.
I. Metering:
2. Provide Microprocessor-based, door-mounted monitoring and protective device designed to perform compete electrical metering and system voltage protection.
3. Direct reading metered values shall include:
a. AC ampere - Phase 1, Phase B, Phase C
b. AC Voltage - Phase A-N, Phase B-N, Phase C-N - Phase A-B, Phase B-C, Phase $\mathrm{C}-\mathrm{A}$, and $\mathrm{N}-\mathrm{G}$
c. Watts
d. Vars
e. VA
f. Power Factor
g. Frequency
h. Watt demand
i. Watthours
j. Frequency
k. \% THD
l. Distortion factory
m. K-factor
n. User configurable custom screens
o. Voltage phase imbalance
p. Current phase imbalance
4. Unit shall be wired to the building automation system (BAS). Coordinate requirements with the BAS contractor. Unit shall be capable of being connected to an energy management system.
5. Unit shall operate with self-contained potential transformers and five (5) current transformers (provide neutral and ground current transformers).
6. Unit shall have harmonic analysis screens, cable to capture a high-speed wave form of two (2) cycles.
7. Web based.
J. All steel surfaces are to be chemically cleaned and treated, providing a bond between paint and metal surfaces to help prevent the entrance of moisture and the formation of rust under the paint. Finish coat shall be manufacturer's standard color.
K. If more distribution sections are needed than what is indicated on the Drawings to provide space needed for the required overcurrent protection devices, such sections shall be provided at no additional cost to the Owner and the Engineer shall be contacted for approval.

2.3 PANELBOARDS

A. Panelboards shall be of a dead front safety type, equipped with thermal magnetic bolt-on molded case circuit breakers or Type CCPB-compact circuit protector as indicated on the Drawings. All panels shall be of the same manufacture.
B. Panelboards on the drawings shall be provided with barriers, and/or protective covers, placed such that no uninsulated, ungrounded service busbar or service terminal is exposed to inadvertent contact by persons or maintenance equipment while servicing load terminations.
C. Gutter space shall be a minimum of $4^{\prime \prime}$ on all sides.
D. Panelboards shall have full capacity neutral bus and ground bus.
E. All buses including neutral and ground buses shall be of high conductivity copper.
F. Service entrance panelboards shall be provided with voltage surge protection rated and suitable for the service.
G. Provide isolated/insulated ground bus where indicated on the Drawings.
H. Provide surge suppression where indicated on the Drawings.
I. Provide double neutral bus where indicated on the Drawings.
J. Panelboard Enclosures:

1. Enclosures shall be fabricated from 16-gauge minimum galvanized or equivalent rustresistant steel with rust-inhibiting primer and baked-enamel finish.
2. Panels shall be furnished with standard doors and locks. Key all locks alike and furnish two sets of keys.
3. Enclosure for panels rated 100 amperes and over shall have a hinged front cover so as to be a "door-on-door" arrangement.
K. Circuit Breakers:
4. Circuit breakers shall be molded case, bolt on heavy-duty type having quick make, quick break manually operated toggle mechanism. Handle shall be trip free with three positions that clearly indicate when the breakers are "on," "off," or "tripped." Multiple pole circuit breakers shall operate on a common trip principle. All circuit breakers shall provide overcurrent and short circuit protection.
5. Circuit breakers shall be manufactured such that amperages shall be clearly visible on all breakers (stamped or labeled) without having to remove any components of the panelboard to obtain this information.
6. Where new circuit breakers are to be added to existing panelboards, they shall be compatible with the panelboard. Where new circuit breakers are not part of an existing or new panelboard, they shall be housed in a NEMA 1 enclosure for dry locations and NEMA 3R for damp or exterior locations.
7. Where sprinklers are provided in the elevator shaft, provide shunt trip unit on circuit breaker for elevator power.
8. Special requirements shall be as indicated, including ground fault current interrupting (GFCI), shunt trip, arc fault, etc., on circuit breakers for indicated branch circuits on local distribution panels.
9. Provide 30 mA GFCI circuit breakers for use on all heat trace circuits.
10. Circuit breakers shown as service entrance protection on the Drawings shall be rated for such use.
11. Circuit breaker(s) for the fire alarm system shall be mechanically protected, have a red marking (be accessible to only authorized personnel), and be identified as "FIRE ALARM CIRCUIT", as required by NFPA 72.
L. Surge Suppression:
12. Suppressors shall be listed in accordance with UL 1449 and UL 1283.
13. Suppressors shall provide redundant suppression modules between each phase conductor and the neutral conductor, between each phase conductor and the ground and between the neutral conductor and ground.
14. Suppressor manufacturer shall provide certified test data confirming a "fail-short" failure mode.
15. Visible indication of proper suppressor connection and operation shall be provided. The indicator lights shall indicate which phase as well as which module is fully operable.
16. The suppressor shall incorporate copper bus bars for the surge current path. Surge current diversion modules shall use bolted connections to the bus bars for reliable low impedance connections.
17. Suppressors shall meet or exceed the following criteria:
a. Maximum single impulse current rating shall be no less than 240kA per phase.
b. Pulse life test: Capable of protecting against and surviving 5000 ANSI/IEEE C62.41 Category C transients without failure or degradation of UL 1449 clamp voltage by more than 10%.
c. UL 1449 clamping voltage must not exceed the following:

Voltage	L-N	L-G	N-G	L-L
$208 / 120$	330 V	330 V	330 V	700 V

d. The ANSI/IEEE C62.41-1991 Category C3 clamping voltage shall not exceed the following:

Voltage	L-N	L-G	N-G
$208 / 120$	520 V	520 V	520 V

7. The SPD shall be constructed using surge current modules (MOV based). Each module shall be fused with user-replaceable 200,000 AIC rated fuses. The status of each module shall be monitored on the front of the SPD enclosure as well as on the module.
8. The SPD shall be installed internal to electrical distribution equipment by the electrical distribution equipment manufacturer.
9. The SPD shall be equipped with an audible alarm which shall actuate when any one of the surge current modules has failed. An alarm on/off switch shall be provided to silence the alarm and an alarm push-to-test switch shall be provided to test the alarm. Both switches and audible alarm shall be located on the front panel of the switchboard.
10. The suppressor shall have a response time no greater than 0.5 nanoseconds for any of the individual protection modes.
11. The suppressor will have a warranty for a period of five years, incorporating unlimited replacements of suppressor parts if they are destroyed by transients during the warranty period.
12. The suppressor shall include an internal UL listed disconnect switch.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Switchboard and panelboard installation shall conform to NEC requirements, in particular Article 110-16.
B. Floor-mounted switchboards shall be mounted on 4 -inch high concrete housekeeping pads.
C. Install switchboards and panelboards according to manufacturer's recommendations.
D. Test switchboards and panelboards in accordance with Section 260800.
E. Provide filler pieces for unused spaces in switchboards and panelboards.
F. Prepare and affix typewritten directory to inside cover of switchboard and panelboard doors indicating loads controlled by each circuit. Protect directory with plastic. Use of Engineer's panelboard schedule for panelboard directory is not allowed.
G. All panels shall be mounted in accordance with Section 260700.
H. Unless otherwise indicated on the Drawings, install all switchboards and panelboards with the top breaker handle 6'6" maximum above the finished floor, or concrete pad.
I. Verify exact wall dimensions in field to ensure that standard panelboard cabinets specified can be arranged in the space allocated.
J. All scratched or marred surfaces shall be repaired to match original condition.
K. All switchboards and panelboards shall have permanently affixed circuit numbers at each circuit space.
L. Provide two (2) spare 1" conduits from each new flush-mounted panelboard to accessible area above ceiling.

END OF SECTION

Panelboards

Panelboard Series Ratings	9-2
NQ Panelboards-240 Vac, 48 Vdc	9-10
Selection Procedure for NQ Merchandised Panelboards	9-10
NQ Merchandised Main Lug Interiors	9-11
NQ Merchandised Main Circuit Breaker Interiors	9-12
QOB Circuit Breakers for NQ Panelboards	9-15
NQ Factory Assembled Panelboards	9-18
NQ Trim Front, Ground Bar, and SPD Options	9-21
NQ Panelboard Accessories	9-22
Fingersafe IP2X per IEC 60529 Barriers for NQ Panelboards	9-25
U.S. Service Entrance Barrier Kits	9-26
NF Panelboards-600Y/347 Vac Max.	9-27
Selection Procedure for NF Merchandised Panelboards	9-27
NF Merchandised Main Lug Three Phase Interiors	9-28
NF Merchandised Main Circuit Breaker Interiors	9-29
E-Frame Circuit Breakers for NF Panelboards	9-30
NF Factory Assembled Main Circuit Breakers	9-32
NF Factory Assembled Panelboard Common Features	9-33
NF Panelboard Accessories	9-35
Separated Distribution and Split Bus Panelboards	9-37
Separated Distribution and Split Bus NF and NQ Panelboards	9-37
Single Row (Column Width) NF and NQ Panelboards	9-39
NQ Single-Row Panelboards-240 Vac Bolt-on	9-39
NF Single-Row Panelboards-480Y/277 Vac Bolt-on	9-40
Powerlink ${ }^{\text {TM }}$ Lighting Control Systems	9-41
Powerlink Lighting Control Products	9-41
I-Line ${ }^{\text {TM }}$ Panelboards-600 Vac, 250 Vdc	9-46
I-Line Merchandised Panelboards	9-46
I-Line Merchandised Panelboard Accessories	9-50
Molded Case Circuit Breakers for I-Line Panelboards	9-54
I-Line Factory Assembled Panelboards	9-64
QMB/QMJ Fusible Panelboards Switch Units-600 Vac 250 Vdc	9-65
QMB/QMJ Fusible Panelboards Switch Units	9-65
Special Features, Modifications, and Terminal Data	9-67
Special Features	9-67
Terminal Data for NQ and NF Terminal Data	9-68
Terminal Data for I-Line and QMB / QMJ Panelboards	9-68

Panelboards
Refer to NQ Panelboards
SQUARED
www.se.com/us

NQ Panelboards
This page contains UL Tested and Certified series combination ratings for panelboards. These ratings apply to either an integral main located in the same enclosure or a remote main located in a separate enclosure.

Table 9.1: NQ Series Connected Circuit Breaker Ratings (RMS Symmetrical)

Maximum System Voltage AC [1]	Maximum Short Circuit Current Rating[2]	Square $\mathrm{D}^{\text {TM }}$ Brand Integral or Remote Main Circuit Breakers and Remote Main Fuses[3][4][5]	Square D ${ }^{\text {TM }}$ Brand Branch Circuit Breaker Catalog Designation and Allowable Ampere Ranges			
			Type[6][7][8]	1 Pole	2 Pole	3 Pole
120/240 1P/3W 208Y/120 3P/4W 240/120 3P/4W	18,000	LA / LH	QO (B)	15-30 A	15-30 A	-
	22,000	QO (B) VH, QOB-VH	QO (B)	15-70 A	15-125 A	-
			QO (B) GFI	15-30 A	15-60 A	-
			QO (B) EPD	15-30 A	15-60 A	-
			QO (B) PL	15-30 A	15-60 A	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-
	25,000	QD	QO (B)	15-70 A	15-125 A	-
			QOB-VH	-	150 A	-
			QO (B) PL	15-30 A	15-60 A	-
			QO (B) GFI	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) EPD	15-30 A	15-60 A	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-
		ED	QO (B)	15-70 A	15-125 A	-
			QO (B) GFI	15-30 A	15-60 A	-
			QO (B) EPD	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-
		BD, HD, JD, LD	QO (B)	15-70 A	15-125 A	-
			QOB-VH	-	150 A	-
			QO (B) PL	15-30 A	15-60 A	-
			QO (B) GFI	15-30 A	15-60 A	-
			QO (B) EPD	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	$15-20 \mathrm{~A}$	-
			QO (B) DF	15-20 A	-	-
	42,000	LA	QO (B)	15-30 A	15-30 A	-
	65,000	QG	QO (B)	15-70 A	15-125 A	-
			QO(B) VH	15-70 A	$15-125 \mathrm{~A}$	-
			QOB-VH	-	150 A	-
			QO (B) GFI	15-30 A	15-60 A	-
			QO (B) PL	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-
		EG	QO (B)	15-70 A	15-125 A	-
			QO (B) GFI	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) EPD	15-30 A	15-60 A	-
			QO (B) EPE	-	-	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-
		BG, HG, JG, LG	QO (B)	15-70 A	15-125 A	-
			QOB-VH	-	150 A	-
			QO (B) PL	15-30 A	15-60 A	-
			QO (B) GFI	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) EPD	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-
	100,000	QJ	QO (B)	15-70 A	15-125 A	-
			QOB-VH	-	150 A	-
			QO (B) PL	15-30 A	15-60 A	-
			QO (B) GFI	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) EPD	15-30 A	$15-60 \mathrm{~A}$	-
			QO (B) AFI	15-20 A	-	-
			QO (B) CAFI	15-20 A	15-20 A	-
			QO (B) DF	15-20 A	-	-

[^0][2] Short Circuit tests are conducted at 100-105\% of the maximum rated voltage of the panelboard.
[3] Please consult the NQ/NQM Panelboards Information Manual (80043-712-06) for additional information, including series ratings with obsolete circuit breakers.
[4] Where LG is shown, LJ and LL can be used.
[5] Unless otherwise noted, main breakers can be applied at the maximum available amperage rating.
[6] Suffixes HID, SWD, and SWN may also be applied to the applicable branch circuit breakers shown above.
[7] Where $\mathrm{QO}(\mathrm{B})$ circuit breakers are shown above, $\mathrm{QO}(\mathrm{B}) \mathrm{H}, \mathrm{QO}(\mathrm{B}) \mathrm{VH}$, and $\mathrm{QH}(\mathrm{B})$ circuit breakers may also be used.

Table 9.1 NQ Series Connected Circuit Breaker Ratings (RMS Symmetrical) (cont'd.)

[9] Series Ratings listed at higher system voltages apply to lower system voltages (Example: 240 3P/3W covers 208Y/120 3P/4W)
[10] Short Circuit tests are conducted at 100-105\% of the maximum rated voltage of the panelboard.
[11] Please consult the NQ/NQM Panelboards Information Manual (80043-712-06) for additional information, including series ratings with obsolete circuit breakers
[12] Where LG is shown, LJ and LL can be used.
[13] Unless otherwise noted, main breakers can be applied at the maximum available amperage rating.
[14] Suffixes HID, SWD, and SWN may also be applied to the applicable branch circuit breakers shown above.
[15] Where $\mathrm{QO}(\mathrm{B})$ circuit breakers are shown above, $\mathrm{QO}(\mathrm{B}) \mathrm{H}, \mathrm{QO}(\mathrm{B}) \mathrm{VH}$, and $\mathrm{QH}(\mathrm{B})$ circuit breakers may also be used.
[16] Two-pole CAFI circuit breakers cannot be used on 208Y/120V systems.

Table 9.1 NQ Series Connected Circuit Breaker Ratings (RMS Symmetrical) (cont'd.)

[9] Series Ratings listed at higher system voltages apply to lower system voltages (Example: 240 3P/3W covers 208Y/120 3P/4W)
[10] Short Circuit tests are conducted at $100-105 \%$ of the maximum rated voltage of the panelboard.
[11] Please consult the NQ/NQM Panelboards Information Manual (80043-712-06) for additional information, including series ratings with obsolete circuit breakers
[12] Where LG is shown, LJ and LL can be used.
[13] Unless otherwise noted, main breakers can be applied at the maximum available amperage rating.
[14] Suffixes HID, SWD, and SWN may also be applied to the applicable branch circuit breakers shown above.
[15] Where $\mathrm{QO}(\mathrm{B})$ circuit breakers are shown above, $\mathrm{QO}(\mathrm{B}) \mathrm{H}, \mathrm{QO}(\mathrm{B}) \mathrm{VH}$, and $\mathrm{QH}(\mathrm{B})$ circuit breakers may also be used.
[16] Two-pole CAFI circuit breakers cannot be used on 208Y/120V systems.

Table 9.1 NQ Series Connected Circuit Breaker Ratings (RMS Symmetrical) (cont'd.)

Maximum System Voltage AC [9]	Maximum Short Circuit Current Rating[10]	Square $\mathrm{D}^{\text {TM }}$ Brand Integral or Remote Main Circuit Breakers and Remote Main Fuses[11][12][13]	Square D $^{\text {TM }}$ Brand Branch Circuit Breaker Catalog Designation and Allowable Ampere Ranges			
			Type[14][15][16]	1 Pole	2 Pole	3 Pole
$\begin{gathered} 240 / 1203 \mathrm{P} / 4 \mathrm{~W} \\ 2403 \mathrm{P} / 3 \mathrm{~W} \end{gathered}$	50,000	600 A Max. Class T3 Fuses	QO (B) VH	-	-	15-30 A
	65,000	400 A Max. Class J Fuses	QO (B) VH	-	-	15-100 A
		400 A Max. Class T6 Fuses	QO (B) VH	-	-	15-100 A
			QOB-VH	-	-	110-150 A
	100,000	200 A Max. Class T3 Fuses	QO (B)	-	-	15-100 A
			QO (B) EPD	-	-	15-50 A
			QO (B) EPE	-	-	15-50 A
	200,000	200 A Max. Class T6 or J Fuses	QO (B)	-	-	15-100 A
			QO (B) EPD	-	-	15-50 A
			QO (B) EPE	-	-	15-50 A
		400 A Max. Class T3 Fuses	QO (B)	-	-	$15-100 \mathrm{~A}$
			QO (B) EPD	-	-	15-50 A
			QO (B) EPE	-	-	15-50 A

NF Panelboards

This page contains UL Tested and Certified series combination ratings for panelboards. These ratings apply to either an integral main located in the same enclosure or a remote main located in a separate enclosure.

Table 9.2: NF Series Connected Circuit Breaker Ratings (RMS Symmetrical)

Maximum System Voltage, AC [17]	Max. Short Circuit Current Rating	Square $D^{\text {TM }}$ Brand Integral or Remote Main Circuit Breakers and Remote Main Fuses[18]	Square D ${ }^{\text {TM }}$ Brand Branch Circuit Breaker Catalog Designation and Allowable Ampere Ranges			
			Circuit Breaker Abbreviation[19]	1 Pole	2 Pole	3 Pole
$\begin{gathered} 120 \\ 120 / 240 \\ 240 \end{gathered}$	65,000	EG, BG, HG, JG, LG, LH	EDB	15-70	15-125	15-125
		EG	ECB-G3	15-30	15-30	15-30
	100,000	EJ, BJ, HJ, JJ, LJ	EDB, EGB	15-70	15-125	15-125
		EJ, BJ, HJ, JJ	ECB-G3	15-30	15-30	15-30
	125,000	HL, JL	EDB, EGB, EJB	15-70	15-125	15-125
		HL, JL	ECB-G3	15-30	15-30	15-30
	200,000	HR, JR, LR	EDB, EGB, EJB	15-70	15-125	15-125
		HR, JR	ECB-G3	15-30	15-30	15-30
		Class J or T (600 V) 200 A Max Fuses	ECB-G3	15-30	15-30	15-30
$\begin{gathered} 277 \\ 480 \mathrm{Y} / 277 \end{gathered}$	35,000	EG, BG, HG, JG, LG, LH	EDB	15-70	15-125	15-125
		EG, BG, HG, JG, LG, LH	EDB-EPD	15-50	-	-
		EG, BG, HG, JG	ECB-G3	15-30	15-30	15-20
	65,000	EJ, BJ, HJ, JJ, LJ	EDB, EPD	15-70	15-125	15-125
		EJ, BJ, HJ, JJ, LJ, LL	EDB-EPD, EGB-EPD	15-50	-	-
		EJ, BJ, HJ, JJ	ECB-G3	15-30	15-30	15-20
	100,000	HL, JL, LL	EDB, EGB, EJB	15-70	15-125	15-125
		HL, JL, LL	EDB-EPD, EGB-EPD, EJB-EPD	15-50	-	-
		Class J or T (600 V) 400 A Max Fuses	EDB, EGB, EJB	15-70	15-125	15-125
		Class J or T (600 V) 400 A Max Fuses	EDB-EPD, EGB-EPD, EJB-EPD	15-50	-	-
	200,000	HR, JR, LR	EDB, EGB, EJB	15-70	15-125	15-125
		HR, JR, LR	EDB-EPD, EGB-EPD, EJB-EPD	15-50	-	-
		HR, JR	ECB-G3	15-30	15-30	15-20
		Class J or T (600 V) 200 A Max Fuses	EDB, EGB, EJB	15-70	15-125	15-125
		Class J or T (600 V) 200 A Max Fuses	EDB-EPD, EGB-EPD, EJB-EPD	15-50	-	-
		Class J or T (600 V) 200 A Max Fuses	ECB-G3	15-30	15-30	15-20
$\begin{gathered} 347 \\ 600 \mathrm{Y} / 347 \end{gathered}$	18,000	HG, BG, JG, LG	EDB	15-70	15-100	15-100
	25,000	EJ, BJ, HJ, JJ, LJ, LH	EDB, EGB	15-70	15-100	15-100
	50,000	HL, JL, LL	EDB, EGB, EJB	15-70	15-100	15-100
	65,000	HR, JR	EDB, EGB, EJB	15-70	15-100	15-100
		LR	EJB	15-70	15-100	15-100
	200,000	Class J or T (600 V) 200 A Max Fuses	EDB, EGB, EJB	15-70	15-100	15-100

[9] Series Ratings listed at higher system voltages apply to lower system voltages (Example: 240 3P/3W covers 208Y/120 3P/4W)
[10] Short Circuit tests are conducted at 100-105\% of the maximum rated voltage of the panelboard.
[11] Please consult the NQ/NQM Panelboards Information Manual (80043-712-06) for additional information, including series ratings with obsolete circuit breakers.
[12] Where LG is shown, LJ and LL can be used.
[13] Unless otherwise noted, main breakers can be applied at the maximum available amperage rating.
[14] Suffixes HID, SWD, and SWN may also be applied to the applicable branch circuit breakers shown above
[15] Where $\mathrm{QO}(\mathrm{B})$ circuit breakers are shown above, $\mathrm{QO}(\mathrm{B}) \mathrm{H}, \mathrm{QO}(\mathrm{B}) \mathrm{VH}$, and $\mathrm{QH}(\mathrm{B})$ circuit breakers may also be used.
[16] Two-pole CAFI circuit breakers cannot be used on 208Y/120V systems.
[17] Short circuit tests are conducted at 100-105\% of the maximum rated voltage of the panelboard.
[18] Please consult the NF/NFOM Panelboards Information Manual (80043-741-03) for additional information, including series ratings with obsolete circuit breakers.
[19] EDB-EPD, EGB-EPD \& EJB-EPD suitable for $480 \mathrm{Y} / 277 \mathrm{Vac}$ or 277 Vac ONLY.

I-Line Panelboards

Table 9.3: I-Line Series Connected Circuit Breaker Ratings (RMS Symmetrical)

Maximum System Voltage AC [20]	Maximum Short Circuit Current Rating	Square D Brand Integral or Remote 2- or 3-Pole Main Circuit Breaker [21]	Square D Brand Branch Circuit Breaker	
			Catalog Designation	Poles
120	42,000	MG	FY	1
	$65,000$	QG, LH	FA, FD	
		QG, BG6, HG, JG, LG, MG, PG	BD6 (60 A Max.)	
	100,000	FJ, QJ	FD	
		QJ, LC	FA	
		LJ	FH	
		QJ, BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6 (60 A Max.)	
	125,000	HL, JL, LL	BD6, BG6, BJ (60 A Max.)	
	200,000	LR	FH, FY	
		HR, JR	BD6, BG6, BJ (60 A Max.)	
208Y/120	65,000	QG, BG6, HG, JG, LG, MG, PG	BD6	2, 3
	100,000	QJ	FA, FD	
		QJ, BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6	
		QJ, PH, PJ, RJ	QD, QG	
240	35,000	MG	FA	1
	42,000	KA	FD	1, 2, 3
		LA, MA	HD, JD, QD	2, 3
	50,000	MG	FA	
		MG	FA (25 A Max.)	1
	65,000	HG, JG	FA, HD	2,3
		JG	JD, QD	
		QG	FA, FD, QD	
		QG, BG6, HG, JG, LG, MG, PG	BD6	
		LH, MH, PA, PG, RG	HD, JD, QD	
		FG, FH, MH, MX, PJ	FD	1,2,3
		FC, KC, KH, LC, LH	FD, FG	
		LH	FA	
		LH	LA	2,3
		MG	HD, JD, KA	
		DG	FH, HD, JD, KA, LA, MA	
		LG	HD, JD, KA, LA, MA	
		LG	LD	3
	85,000	RL	FH, KH	2, 3
	100,000	FC, KC, LC, LX	FD, FG, FJ	1
		PH, PJ, RJ	QD, QG	2, 3
		QJ	FD	2
		FJ	FD	
		LJ	$\begin{gathered} \text { HD, HG, JD, JG, FH, KA, LA, MA, } \\ M G \end{gathered}$	2, 3
		LJ	LD, LG	3
		FC, KC	FA, FH, FD, FG, FJ	2,3
		LC, LX	FH, FD, FG, FJ	
		QJ, BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6	
		KC, LC, LX	KA	
		KC, LC	KH	
		LC	LA, LH, MG	
		LC	FA	1,2,3
		HJ, JJ	FA, FH, HD, HG	2,3
		JJ	JD, JG	
		LC, LX, MJ, PJ, RJ	HD, HG, JD, JG	
		MJ	LA, LH	
		DJ	$\begin{gathered} \text { FH, HD, HG, JD, JG, KA, LA, MA, } \\ \text { MG } \end{gathered}$	
		RL	RG	
		HL, JL	HD, HG, HJ, FA, FH	
	125,000	JL	JD, JG, JJ	
		HL, JL, LL	BD6, BG6, BJ	
		PC, PH, PL, RL	HD, HG, JD, JG	
		PC, PL, RL	HJ, JJ	
		FI, KI, LI, LXI	HD, HG, HJ	
		KI, LI, LXI	JD, JG, JJ	
	200,000	FI, KI, LI, LXI	FD, FG, FJ	1
		FI, KI	FA, FH, FC, FD, FG, FJ	2, 3
		LI, LXI	FH, FD, FG, FJ	
		LI	FC	
		HR, JR, LR	BD6, BG6, BJ	
		KI, LI, LXI	KA, QD, QG, QJ	
		LI	KC	
		JR	QD	
		LR	HJ, HL, JJ, JL, FH, LA, LH, QD, QG,	
277	18,000	LD	FY	1
	25,000	FH, KA	FD	
	35,000	FG, KH, LH	FD	
		DG, LG	FH, FY	
		FC, KC	FH	
		BG6, HG, JG, LG, MG, PG	BD6 (60 A Max.)	

Table 9.3 I-Line Series Connected Circuit Breaker Ratings (RMS Symmetrical) (cont'd.)

	Maximum Short Circuit Current	Square D Brand Integral or	Square D Brand Bran	eaker
	Rating	Remote 2- or 3-Pole Main Circuit Breaker [23]	Catalog Designation	Poles
		FJ	FD	
		FC, KC	FA, FY, FD, FG	
		LC, LX (400 A Max.)	FH	
		LC, LX (600 A Max.)	FY, FD, FG	
	65,000	DJ	FH, FY	
		LL	FY	
		LJ	FH, FY	
		BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6 (60 A Max.)	
		FI, KI	FH	
		DL, LL	FH, FJ	
	100,000	HL, JL, LL	BD6, BG6, BJ (60 A Max.)	
		FI, KI	FA, FY, FD, FG, FJ	
		LI, LXI, (400 A Max.)	FH	
	200,000	LI, LXI, (600 A Max.)	FY, FD, FG, FJ	
		HR, JR	BD6, BG6, BJ (60 A Max.)	
		MG	FA	
	22,000	MX, PA, PC, PX	FH	
		KH, LA, MA, PJ	FH	
		LA, MA, PA, PC, PX	KA	
	30,000	LA, MA, PA	HD, JD	
		MG	FA (25 A Max.), FH, KA	
		MX, PA	HD, JD	2,3
		MH	HD, JD	2,3
		HG, JG	FA, HD	
		JG	JD	
		LH, MG, PG, RG	HD, JD	
	35,000	BG6, HG, JG, LG, MG, PG	BD6	
		LH	HG, JG	
		DG	FH, HD, JD, KA, LA, MA	
		LG	LD	3
		LG	HD, JD, FH, KA, LA, MA	2,3
	42,000	MJ	FH (25 A Max.)	
	42,000	RL	RG	
	50,000	MJ	KA, KH	
		FC, KC	FA, FH	
		HJ, JJ	FA, FH, HD, HG	
		BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6	
		JJ	JD, JG	2,3
		LC, LI, LX, LXI	HD, HG, JD, JG	
480	65,000	LC, LX, (400 A Max.)	FH	
		KC, LC, LX	KA	
		LC, LX	LA	
		DJ	FH, HD, HG, JD, JG, KA, LA, MA	
		LJ	LD, LG	3
		LJ	HD, HG, JD, JG, FH, KA, LA, MA	2, 3
		HL, JL	FA, FH, HD, HG, HJ	
		HL, JL, LL	BD6, BG6, BJ	
		JL	JD, JG, JJ	
		LI, LXI (600 A Max.)	KA	2, 3
		PC, PH, PL, RL	HJ, JJ	
	100,000	RL	RG	
		DL	FH, HD, HG, HJ, JD, JG, JJ, KA, LA,	
		LL	LD, LG, LJ	3
		LL	HD, HG, HJ, JD, JG, JJ, FH, KA, LA,	2, 3
		JR	FA	
	200,000	FI, KI	FA, FH, FC, HD, HG, HJ	
		HR, JR	BD6, BG6, BJ	
		KI	JD, JG, JJ, KA	
		LI	FC, KA, KC, LA, HJ, HL, JJ, JL	
		LXI	KA, HJ, HL, JJ, JL	
		HR	FA, HD, HG, HJ, HL	
		JR	HD, HG, HJ, HL, JD, JG, JJ, JL	
		LR	HJ, HL, JJ, JL, FH, LA, LH	
480Y/277	25,000	FH, KA	FD	
	35,000	FG, KH, LH	FD	
		BG6, HG, JG, LG, MG, PG	BD6	
	65,000	FJ	FD	
		BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6	
		FC, KC	FD, FG	
		LC, LX (600 A Max.)	FD, FG	
	100,000	HL, JL, LL	BD6, BG6, BJ	
	200,000	FI, KI	FD, FG, FJ	
		HR, JR	BD6, BG6, BJ	
		LI, LXI (600 A MAX.)	FD, FG, FJ	
600	18,000	HG, JG	FA, HD	2, 3
		MG, PG, RG	JD HD, JD	

Table 9.3 I-Line Series Connected Circuit Breaker Ratings (RMS Symmetrical) (cont'd.)

Maximum System Voltage AC [22]	Maximum Short Circuit Current Rating	Square D Brand Integral or Remote 2- or 3-Pole Main Circuit Breaker [23]	Square D Brand Branch Circuit Breaker	
			Catalog Designation	Poles
		MG	FA	
		LG	LD	3
		LG	HD, JD	
		HJ, JJ	FA, HD, HG	23
		JJ	JD	2,3
	25,000	PJ, RJ	MG	
		LJ	LD, LG	3
		LJ	JD, JG, HD, HG, MA	
	35,000	LC	FH, HD, HG, HJ, JD, JG, JJ, LA	
		HL, JL	FA, HD, HG, HJ	2, 3
		JL	JD, JG, JJ	
	50,000	PK	HJ, JJ, MJ	
		LL	LD, LG, LJ	3
		LL	HD, HG, HJ, JD, JG, JJ, MA	
		FI, KI	HD, HG, HJ	
		KI	JD, JG, JJ	
	100,000	HR	FA, HD, HG, HJ, HL	2,3
		JR	FA, HD, HG, HJ, HL, JD, JG, JJ, JL	
		KI, LI	FH	
		LI	LA	
347	18,000	BG6, HG, JG, LG, MG, PG	BD6 (60 A Max.)	1
	25,000	BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6 (60 A Max.)	
	100,000	HR, JR	BD6, BG6, BJ (60 A Max.)	
600Y/347	18,000	BG6, HG, JG, LG, MG, PG	BD6	3
		MG	FA (25 A Max.)	1
	25,000	BJ, HJ, JJ, LJ, MJ, PJ	BD6, BG6	3
		MJ	FA (25 A Max.)	1
	50,000	HL, JL, LL	BD6, BG6, BJ	3
		HL, JL	FJ	1
	100,000	HR, JR	BD6, BG6, BJ	3

Table 9.4: Fuse/l-Line Circuit Breaker Series Connected Ratings

Maximum System Voltage AC [22]	Maximum Short Circuit Current Rating	Remote Main Fuse		Square D Brand Branch Circuit Breaker Catalog Designation (2- or 3-Pole) Unless Otherwise Stated
		Max A	Class	
120/240 1Ø 208Y/120	100,000	1200 A	L, T (300 V)	QD, QG
		800 A	T (600 V)	
		600 A	J, RK5	
240	65,000	1200 A	L, T (300 V)	QD
		800 A	T (600 V)	
		600 A	J, RK5	
	100,000	1200 A	L, T (300 V)	QD, QG (2-Pole)
		800 A	T (600 V)	
		600 A	J, RK5	
			J, T (600 V)	FA, FH, KA, KH, KC, LA, LH, MA, MH, MX, PG
			RK5	FH, KA, KH, LA, LH, MA, MH, MX, PG, HD, HG, HJ, HL, JD, JG, JJ, JL
			J	HD, HG, HJ, HL, JD, JG, JJ, JL
		800 A	T (600 V)	FH, KA, KH, LA, LH, MA, MH, MX, PG
			T (300 V)	PG
			L	FH, KA, KH, LA, LH, MA, MH, MX, PG
		1200 A	L	FH, KH, LA, LH, MA, MH, MX, PG
			T (600 V)	HD, HG, HJ, HL, JD, JG, JJ, JL
	200,000	600 A	J, T (600 V)	FA (3-pole only) FH, FC, KH, KC, LA, LH, LC, MA, MH, MX, NA, NC, NX, PG, PJ, PL
			RK5	FH, FC, HD, HG, HJ, HL, JD, JG, JJ, JL, KH, KC, LA, LH, LC, MA, MH, MX, NC, NX,
			J	HD, HG, HJ, HL, JD, JG, JJ, JL
		800 A	T (600 V)	FH, FC, KA, KH, KC, LA, LH, LC, MA, MH, MX, NA, NC, NX, PG, PJ, PL
			T (300 V)	PG, PJ, PL
			L	FH, FC, KH, KC, LA, LH, LC, MA, MH, MX, NA, NC, NX, PG, PJ, PL
		1200 A	L	FC, KH, KC, LC, MA, MH, MX, NA, NC, NX, PG, PJ, PL
			T (600 V)	HD, HG, HJ, HL, JD, JG, JJ, JL
480	100,000	400 A	J, T(600 V)	HD, HG, HJ, HL, JD, JG, JJ, JL
		600 A	J, RK5	HJ, HL, JJ, JL
		600 A	J, T (600 V)	FC, KA, KH, KC, LA, LH, LC, MA, MH, MX, NA, PG, PJ
			RK5	FC, KA, KH, KC, LA, LH, LC, MA, MH, MX, NA, PG, PJ
		800 A	L, T(600V)	FC, KA, KH, KC, LA, LH, LC, MA, MH, MX, NA, PG, PJ
		1200 A	L	FC, KH, KC, LA, LH, LC, MA, MH, MX, NA, PG, PJ
			T (600 V)	HJ, HL, JJ, JL
	200,000	200 A	RK5	HJ, HL
		400 A	J	FA, FH, FC, HJ, HL, JJ, JL, KA, KH, KC, LA, LH, LC, MA, MH, MX, NA, NC, NX, PG, PJ, PL
			T (600 V)	FA, FH, FC, HJ, HL, JJ, JL, KA, KH, KC, LA, LH, MA, MH, MX, NA, NC, NX
		600 A	J	FC, KA, KH, KC, LA, LH, LC, MA, MH, MX, MG, MJ, NA, NC, NX, PG, PJ, PL
			T(600 V)	KA, KH, KC, LA, LH, MA, MH, MX, NA, NC, NX
			RK5	KC, LA, LH, LC, MA, MH, MX, MG, MJ, NC, NX, PG, PJ
		800 A	T(300 V)	PG, PJ, PL
			$\mathrm{T}(600 \mathrm{~V})$	KA, KH, KC, LA, LH, MA, MH, MX, MG, MJ, NA, NC, NX, PG, PJ, PL
			L	KC, LA, LH, LC, MA, MH, MX, NA, NC, NX, PG, PJ, PL
		1200 A	L	KC, LC, MA, MH, MX, MG, MJ, NA, NC, NX, PG, PJ, PL
600	100,000	30 A	CC	HG, JG (Molded Case Switches)
		200 A	J	HD, HG, HJ, HL, JD, JG, JJ, JL
		400 A	J, T (600 V)	HJ, HL, JJ, JL

- The fuse used in this UL test is an envelope (umbrella) fuse. This fuse is designed as a "worst case" fuse. Thus, no matter what manufacturer's fuse is used, the Square D brand circuit breaker is protected.
- The line side fused switch may be in a separate enclosure or in the same enclosure as the loadside breaker. A line side fused switch may be a submain, integral main, or remote main. A load side breaker may be a branch, submain, or an integral main used on the load side of a remote main. This series combination short circuit current rating shall not exceed that of the line side fused switch. The charts apply to Square D brand load side breakers only. However, the line side fuse ratings are independent of the fuse manufacturer.
- Not applicable to Corner Grounded Systems.
- Limiters used in Square D brand DSL and DSL II fused power circuit breakers are not class L fuses and do not have series ratings.

Selection Procedure for NQ Merchandised Panelboards

1. Review maximum electrical system voltage, ampacity, and available fault current, and determine the type of panelboard that is desired (see tables Table 9.1-Table 9.4).
2. Identify type (plug-on or bolt-on) and total quantity of branch circuit breaker poles and panel spaces required (see Digest sections 7 and 9 for catalog numbers).
3. Select proper main lug interior (from Main Circuit Breaker Interiors-Will accept plugon and bolt-on circuit breakers, page 9-12 or Table 9.7 NQ 14-inch-wide Main Lug Interiors, page 9-14) or:

- Select main circuit breaker interior and main circuit breaker adapter kit (from Main Circuit Breaker Interiors-Will accept plug-on and bolt-on circuit breakers, page 912 or Table 9.8 Main Circuit Breaker Interiors-Accepts Plug-On and Bolt-On Branch Breakers, page 9-14), based upon the equivalent number of poles and ampere rating.
NOTE: Interiors include solid neutral and are field convertible to top-feed.
- If a main circuit breaker interior was selected, select a vertical main circuit breaker (or fuse) from the PowerPacT H-, J-, L- Q-, or LA/LH frame pages in Section 7 of the Digest, or a QOB or QOB-VH back-fed main circuit breaker in Section 9 of the Digest.

4. Select ground bars from tables Table 9.9 or any non-standard neutral assemblies (i.e., 200\% neutral for non-linear loads) from Table 9.38.

- Please note that an aluminum ground bar kit is included with NQ Panelboard Interiors.

5. Select any required sub-feed circuit breakers, sub-feed lugs (SFL), or feed-through lugs (FTL) kits:

- Subfeed circuit breaker (SFB), Sub-feed lugs (SFL) or feed-through lugs (FTL) kits: Table 9.39 in the NQ Accessories sections.
- For subfeed circuit breakers select a PowerPacT H-, J-, L-, or Q-frame circuit breaker from Section 7 of the Digest.

6. Determine the total enclosure height required by adding requirements from interior, main circuit breaker, neutrals and ground bars, SFL, FTL, or sub-feed circuit breaker.
7. Select enclosure from the tables Table 9.5-Table 9.9, Table 9.38-Table 9.42, , Table 9.25, and Table 9.27.

NEMA Type 1-select box and front (cover) catalog number corresponding to interior catalog number.
NEMA Type 3R, 5, 12—select enclosure. Cover for Type 3R, 5, 12 is included with the enclosure.
8. Select the branch circuit breakers to be installed in the panel. For NQ panelboards use QO (VH) or QH circuit breakers from Section 7 of the Digest, QOB (VH), or QHB circuit breakers from Section 9 of the Digest.
9. Select options and accessories from tables Table 9.7-Table 9.43.

NOTE: Additional NF and NQ options may be found in the Supplemental and Obsolescence Digest, Section 4.

NQ Merchandised Selection Example
208Y/120 Vac, 3Ø4W, 10 kA SCCR, 225 A, MLO, NEMA Type-1, surface-mount, bolton, branch circuit breakers, main sub-feed lugs

Branches	Table No.	Catalog Number	Spaces
$(20) 20 / 1$	Table 9.11	(20) QOB120	20
two 40/2	Table 9.11	two QOB240	4
two 30/3	Table 9.11	two QOB330	6
Branches	Table No.	Catalog Number	Total 30 spaces
Min. Box Height			
Enclosure (Box)	Table 9.5	NQ430L2	32 inches
Front (Cover)	Table 9.5	MH38	-
Sub-feed Lugs	Table 9.5	NC382S	-

NQ Merchandised Main Lug Interiors
NQ Panelboards-240 Vac, 48 Vdc
Online Refer to NQ Panelboards
www.se.com/us

NQ Main Lug Interiors-240 Vac, 48 Vdc $_{[1]}$
Table 9.5: Main Lug Interiors-Accepts plug-on and bolt-on circuit breakers

Circuit Breaker Pole Spaces [2]	Mains Rating (Amps)	Interior Only (Order Branch Circuit Breakers Separately) [3][4]	NEMA Type 1 Enclosure[5]					Water, Dirt, \& Dust Resistant Enclosure Catalog Numbers[5][6]		
			$\begin{gathered} \text { Box } \\ 20 \mathrm{in.W} \text { W } 5.75 \mathrm{in.}[7] \\ \text { or } 8.75 \mathrm{in} \text {. D[8]i[9] } \end{gathered}$	Mono-Flat ${ }^{\text {™ }}$ Trim Front [10]	Hinged Trim Front[10]	Mono-Flat" 3 Point Latch Trim Front [10] [11]	Hinged 3 Point Latch Trim Front [10][11]	$\begin{aligned} & \text { Type } 3 \mathrm{R} / 5 / 12 \\ & 20 \mathrm{in} . \mathrm{W} \mathrm{x} \\ & 5.75 \mathrm{in} . \mathrm{D}[12] \end{aligned}$	Vented Type 3R 26 in. W x 8.75 in. D[13]	Height (In.)
20-inch-wide Cabinet/14] - Single Phase 3-Wire.										
18	100	NQ18L1	MH26, MH26BE	NC26 ()	NC26()HR	-	-	MH26WP	-	26
30		NQ30L1	MH32, MH32BE	NC32 ()	NC32()HR	-	-	MH32WP	-	32
		NQ30L1C								
30	225	NQ30L2	MH32, MH32BE	NC32 ()	NC32()HR	-	-	MH32WP	-	32
42		NQ42L2	MH38, MH38BE	NC38 ()	NC38()HR	-	-	MH38WP	-	38
		NQ42L2C								
72		NQ72L2	MH44, MH44BE	NC44 ()	NC44()HR	-	-	MH44WP	-	44
84		NQ84L2	MH50, MH50BE	NC50 ()	NC50()HR	-	-	MH50WP	-	50
		NQ84L2C								
30	400	NQ30L4	MH50, MH50BE	NC50V ()	NC50V()HR	NC50V()3P	-	MH50WP	MH62D9VWP	50/62
42		NQ42L4								
		NQ42L4C								
54		NQ54L4	MH56, MH56BE	NC56V()	NC56V()HR	NC56V()3P	-	MH56WP	MH68D9VWP	56/68
84[15]		NQ84L4C	MH68, MH68BE	NC68V ()	NC68V()HR	NC68V()3P	NC68V()3PHR	MH68WP	MH80D9VWP	68/80
30	600	NQ30L6C	MH50, MH50BE	NC50V ()	NC50V()HR	NC50V()3P	NC50V()3PHR	MH62WP[16]	MH62D9VWP[16]	50/62
42		NQ42L6C								
54		NQ54L6C	MH56, MH56BE	NC56V()	NC56V()HR	NC56V()3P	NC56V()3PHR	MH68WP[16]	MH68D9VWP[16]	56/68
84[15]		NQ84L6C	MH68, MH68BE	NC68V ()	NC68V()HR	NC68V()3P	NC68V()3PHR	MH80WP[16]	MH80D9VWP[16]	68/80
20-inch-wide Cabinet[14]-Three Phase 4-Wire										
18	100	NQ418L1	MH26, MH26BE	NC26 ()	NC26()HR	-	-	MH26WP	-	26
		NQ418L1C								
30		NQ430L1	MH32, MH32BE	NC32 ()	NC32()HR	-	-	MH32WP	-	32
30	225	NQ430L2	MH32, MH32BE	NC32 ()	NC32()HR	-	-	MH32WP	-	32
		NQ430L2C								
42		NQ442L2	MH38, MH38BE	NC38 ()	NC38()HR	-	-	MH38WP	-	38
54		NQ442L2C								
		NQ454L2C								
72[15]		NQ472L2	MH44, MH44BE	NC44 ()	NC44()HR	-	-	MH44WP	-	44
84[15]				NC50 ()	NC50()HR	-	-	MH50WP	-	50
		NQ484L2C	MH50, MH50BE							
30	400	NQ430L4	MH50, MH50BE	NC50V ()	NC50V()HR	NC50V()3P	-	MH50WP	MH62D9VWP[16]	50/62
		NQ430L4C								
42		$\frac{\mathrm{NQ} Q 42 \mathrm{~L} 4}{\mathrm{NO} 442 \mathrm{~L} 4 \mathrm{C}}$								
54		NQ454L4	MH56, MH56BE	NC56V()	NC56V()HR	NC56V()3P	-	MH56WP	MH68D9VWP[16]	56/68
		NQ454L4C								
72[15]		NQ472L4	MH62, MH62BE	NC62V ()	NC62V()HR	NC62V()3P	NC62V()3PHR	MH62WP	MH74D9VWP[16]	62/74
84[15]		NQ484L4C	MH68, MH68BE	NC68V ()	NC68V()HR	$\mathrm{NC68V}$ ()3P	NC68V()3PHR	MH68WP	MH80D9VWP[16]	68/80
30	600	NQ430L6C	MH50, MH50BE	NC50V ()	NC50V()HR	NC50V()3P	NC50V()3PHR	MH62WP[16]	MH62D9VWP[16]	50/62
42		NQ442L6C								
54		NQ454L6C	MH56, NH56BE	NC56V()	NC56V()HR	$\mathrm{NC56V}$ ()3P	NC56V()3PHR	MH68WP[16]	MH68D9VWP[16]	56/68
84[15]		NQ484L6C	MH68, MH68BE	NC68V()	NC68V()HR	NC68V() 3 P	NC68V()3PHR	MH80WP[16]	MH80D9VWP[16]	68/80

Note: All NQ Merchandised Panelboard interiors include the following: a NQFP15 bag of blank filler plates; a neutral bonding strap; an NQ information manual; a NEMA instruction booklet; and a sheet of circuit numbers.
[1] DC voltage applications require installation of DC rated $\mathrm{QO}(\mathrm{B})$ circuit breakers
[2] Please note that some local building codes limit panelboards to 42 circuits, including those that reference 2005 or earlier version of NFPA 70.
[3] Accepts all QO(B) shown in Tables in Sections 7 and 9 . Branch circuit breaker trip ampacity cannot exceed panelboard mains rating. 175 A and 200 A circuit breakers may only be installed in single phase 400 A and 600 A NQ Panelboards. Tandem circuit breakers may not be installed.
[4] "C" suffix indicates copper bussing.
[5] Enclosure height may increase if accessories including alternate neutral lugs, condo riser neutral assemblies, feed-thru lugs, or sub-feed lugs are installed. 26 in. wide enclosures and trim fronts are required if condo riser neutral assemblies are installed.
[6] Wall mounting brackets add 0.4 inches to back of $\mathrm{MH} x \times \mathrm{WP}$ enclosures.
[7] Nominal interior dimensions, see PBA600 for details.
[8] D9 suffix indicates the 8.75 in. Deep Enclosure required for panelboards wit PowerPacT L Main Breaker, Switch, or Sub-Feed Breaker. See PBA604 for dimensional details.
[9] If Blank End Walls are desired at both ends of NEMA 1 Enclosure, select catalog number with "BE" suffix.
[10] Add " F " for flush mount, " S " for surface mount.
[11] Three point latch trim fronts are required for enclosures on panelboards with QO2175, QO2200, QO2175VH, or QO2200VH branch circuit breakers. These breakers take four pole spaces in single phase $N Q$ interior
[12] Enclosure includes trim kit. Nominal interior dimensions, see PBA711 for details.
[13] Vented Type 3R enclosure with three point latch door. Required for outdoor applications with two sub-feed breakers, or sub-feed breaker with trip current >150A. NEMA 3R enclosures must be bottom fed, and a NQ12RDE kit should also be selected. Interior nominal dimensions, see PBA603WP for details.
[14] For the NQ14-inch-wide panelboard offer, See NQ 14 -inch-wide- 240 Vac, 48 Vdc.
[15] Use only if the Local Jurisdiction where this panelboard interior is being applied has adopted the 2008 NFPA 70 - National Electrical Code® (${ }^{(N E C ®}$), which allows single panelboard interiors greater than 42 circuits.
[16] NEMA 3R, 5, or 12 enclosures must be bottom fed, when selected, an NQ12RDE kit should also be selected. See NQ Merchandised Accessories, page 9-22.

Table 9.6: Main Circuit Breaker Interiors-Will accept plug-on and bolt-on circuit breakers

Circuit ker Pole Spaces [18]	$\begin{aligned} & \text { Mai- } \\ & \text { ns } \\ & \text { Rat- } \\ & \text { ing } \\ & \text { (Am- } \\ & \text { ps) } \end{aligned}$	Interior Only Catalog Number (Order Branch Circuit Breakers Separately) [19][20]	Main Circuit Breaker Adapter Kits (Less Circuit Breaker)			NEMA Type 1 Enclosure, Catalog Numbers[21]					Water, Dirt, and Dust Resistant Enclosure Catalog Numbers[21] [22]		
			Main Circuit Breaker Kit	UL Service Entrance Barrier Kit [23]	Circuit Breaker Frame Size[24]	$\begin{gathered} \text { Box } \\ 20 \mathrm{in} . \mathrm{Wx} \\ 5.75 \text { in. D(25] or } \\ 8.7 \mathrm{in} . \mathrm{D} 26] \\ {[27]} \end{gathered}$	MonoFlat ${ }^{\text {¹" }}$ Trim Front [28]	Hinged Trim Front[28]	MonoFlat ${ }^{\text {TM }} 3$ Point Latch Trim Front [28][29]	Hinged 3 Point Latch Trim Front [28][29]	Type 3R/5/12 20in.Wide x 5.75 in. Deep $[30]$	Vented Type 3R 26 in. Wide x 8.75 in. Deep[31]	Ht (1- n.)
20-inch-wide Cabinet [32]-Single Phase 3-Wire													
$\begin{gathered} 16 \\ {[33]} \\ \hline \end{gathered}$	$\begin{aligned} & 15- \\ & 100 \\ & \text { bac- } \\ & \text { k-fed } \end{aligned}$	$\begin{aligned} & \hline \text { NQ18L1 } \\ & \hline \text { NQ18L1C } \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & \text { Select } \\ & \text { 2pole } \\ & \text { QOB or } \\ & \text { QOB- } \\ & \text { VH }[34] \\ & \hline \end{aligned}$	MH26, MH26BE	NC26()	NC26()HR	-	-	MH26WP	-	26
$\begin{gathered} 28 \\ {[33]} \end{gathered}$		NQ30L1	-	-		MH32, MH32BE	NC32()	NC32()HR	-	-	MH32WP	-	32
$\begin{gathered} \hline 26 \\ {[33]} \\ \hline \end{gathered}$	$\begin{aligned} & 110- \\ & 150 \\ & \text { bac- } \\ & \text { k-fed } \end{aligned}$	$\begin{gathered} \hline \text { NQ30L2 } \\ \hline \text { NQ30L2C } \\ \hline \end{gathered}$	-	-	$\begin{gathered} \text { Select } \\ \text { 2-pole } \\ \text { QOB- } \\ \mathrm{VH}[34] \\ {[35]} \end{gathered}$	MH32, MH32BE	NC32()	NC32()HR	-	-	MH32WP	-	32
$\begin{gathered} 38 \\ {[33]} \\ \hline \end{gathered}$		NQ42L2	-	-		MH38, MH38BE	NC38()	NC38()HR	-	-	MH38WP	-	38
$\begin{gathered} 50 \\ {[33]} \\ \hline \end{gathered}$		$\begin{aligned} & \hline \text { NQ54L2 } \\ & \hline \text { NQ54L2C } \\ & \hline \end{aligned}$	-	-		MH38, MH38BE	NC38()	NC38()HR	-	-	MH38WP	-	38
$\begin{gathered} 68 \\ {[33]} \end{gathered}$		NQ72L2	-	-		MH44, MH44BE	NC44()	NC44()HR	-	-	MH44WP	-	44
$\begin{gathered} 80 \\ {[33]} \\ \hline \end{gathered}$		NQ84L2	-	-		MH50, MH50BE	NC50()	NC50()HR	-	-	MH50WP	-	50
18	$\begin{aligned} & 15- \\ & 100 \end{aligned}$	NQ18L1	NQMB2HJ	NQHJQLLC	$\begin{gathered} \text { HD [36], } \\ \text { HG }[36], \\ \text { HJ, } \\ \text { HL, } \\ \text { HR }[36] \\ \hline \end{gathered}$	MH38, MH38BE	NC38()	NC38()HR	-	-	MH38WP	-	38
30		NQ30L1				MH44, MH44BE	NC44()	NC44()HR	-	-	MH44WP	-	44
	$\begin{aligned} & 15- \\ & 225 \end{aligned}$	$\begin{gathered} \hline \text { NQ30L2 } \\ \hline \text { NQ30L2C } \\ \hline \end{gathered}$	NQMB2HJ NQMB2Q	NQHJQLLC	HD [36],HG [36],HJ,HL,HR [36],JD, JG,JJ, JL,JR [36;,or QB,QD,QG,QJ				-	-		-	
42		NQ42L2				MH50, MH50BE	NC50()	NC50()HR	-	-	MH50WP	-	50
72		NQ72L2				MH56, MH56BE	NC56()	NC56()HR	-	-	MH56WP	-	56
84		NQ84L2 NQ84L2C				MH62, MH62BE	NC62()	NC62()HR	-	-	MH62WP	-	62
30 42	$\begin{aligned} & 125- \\ & 400 \end{aligned}$		NQMB4LA	NQLALLC	$\underset{[37]}{\text { LA/LH }}$		NC62V()	NC62V()HR	NC62V()3P	NC62()3PHR		MH62D9VWP	
54		NQ54L4				MH68, MH68BE	NC68V()	NC68V()HR	NC68V()3P	NC68V()3PHR	MH68WP	MH68D9VWP	68
84		NQ84L4C				MH80, MH80BE	NC80V()	NC80V()HR	NC80V()3P	NC80V()3PHR	MH80WP	MH80D9VWP	80
30		NQ30L4	$\underset{\mathrm{L}}{\mathrm{NQM} 6 \text { PP- }}$	NQPPLLLLC	$\stackrel{\text { LG, LJ, }}{ }$	MH62D9	NC62V()	NC62V()HR	NC62V()3P	NC62V()3PHR	-	Factory Assembled Only	62
42		$\begin{gathered} \text { NQ42L4 } \\ \hline \text { NQ42L4C } \\ \hline \end{gathered}$				MH68D9	NC68V()	NC68V()HR	NC68V()3P	NC68V()3PHR	-		68
54		$\begin{aligned} & \text { NQ54L4 } \\ & \hline \text { NQ54LC } \\ & \hline \end{aligned}$				MH74D9	NC74V()	NC74V()HR	NC74V()3P	NC74V()3PHR	-		74
84		NQ84L4C				MH86D9	NC86V()	NC86V()HR	NC86V()3P	NC86V()3PHR	-	-	86
30	$\begin{aligned} & 125- \\ & 600 \end{aligned}$	NQ30L6C	$\underset{\mathrm{L}}{\mathrm{NQMB6P}}$	NQPPLLLLC	$\underset{\text { LG, LJ, }}{ }$	MH62D9	NC62V()	NC62V()HR	NC62V()3P	NC62V()3PHR	-	Factory Assembled Only	62
42		NQ42L6C				MH68D9	NC68V()	NC68V()HR	NC68V()3P	NC68V()3PHR	-		68
54		NQ54L6C				MH74D9	NC74V()	NC74V()HR	NC74V()3P	NC74V()3PHR	-		74
84		NQ84L6C				MH86D9[26]	NC86V()	NC86V()HR	NC86V()3P	NC86V()3PHR	-	-	86

[17] DC Voltage applications require installation of $D C$ rated $Q O(B)$ circuit breakers.
[18] Please note that some local building codes limit panelboards to 42 circuits, including those that reference 2005 or earlier version of NFPA 70.
[19] Accepts all $\mathrm{QO}(\mathrm{B})$ shown in Tables in Sections 7 and 9 . Branch circuit breaker trip ampacity cannot exceed panelboard mains rating. 175 A and 200 A circuit breakers may only be installed in single phase 400 A and 600 A NQ Panelboards. Tandem circuit breakers may not be installed
[20] "C" suffix indicates copper bussing.
[21] Enclosure height may increase if accessories including alternate neutral lugs, condo riser neutral assemblies, feed-thru lugs, or sub-feed lugs are installed. 26 in. wide enclosures and trim fronts are required if condo riser neutral assemblies are installed.
[22] Wall mounting brackets add 0.4 inches to back of MHxxWP enclosures.
[23] Please select the appropriate UL Service Entrance Kit for UL Service Entrance applications (see U.S. Service Entrance Barrier Kits, page 9-26).
[24] Circuit breaker interrupt ratings, see the table for each circuit breaker range in Section 7.
[25] Nominal interior dimensions, see PBA600 for details.
[26] D9 suffix indicates the 8.75 in . Deep Enclosure required for panelboards wit PowerPacT L Main Breaker, Switch, or Sub-Feed Breaker. See PBA604 for dimensional details.
[27] If Blank End Walls are desired at both ends of 5.75 " deep NEMA 1 Enclosure, select catalog number with "BE" suffix. Both end walls are blank in 8.75 " deep enclosures.
[28] Replace () with " F " for flush mount, or " S " for surface mount.
[29] Three point latch trim fronts are required for enclosures on panelboards with QO2175, QO2200, QO2175VH, or QO2200VH branch circuit breakers. These breakers take four pole spaces in single phase $N Q$ interiors.
[30] Enclosure includes trim kit. Nominal enclosure dimensions, see PBA711 for details.
[31] Vented Type 3R enclosure with three point latch door. Required for outdoor applications with PowerPacT L main breaker, two sub-feed breakers, or sub-feed breaker with trip current >150 A. NEMA 3R enclosures must be bottom fed. Interior nominal dimensions, see PBA603WP for details.
[32] For the NQ14-inch-wide panelboard offer, See NQ 14 -inch-wide- $240 \mathrm{Vac}, 48 \mathrm{Vdc}$, page 9-14.
[33] Pole spaces shown are available for branch circuits, with spaces deducted for the back-fed main breaker.
[34] Do not select a back-fed main for panels to be "Suitable for use as UL service equipment." Select a H frame circuit breaker (and associated main circuit breaker kit) from the list for 225 interiors, for panels to be "Suitable for use as UL service equipment."
[35] QOB2110VH, QOB2125VH, or QOB2150VH take four pole spaces in NQ single phase interior
[36] For single phase applications, order a 3-pole breaker. Example: HDL36100.
[37] Available for 125-400 A applications. Please order short handle circuit breaker (i.e., LAL36400MB).

Table 9.6 Main Circuit Breaker Interiors-Will accept plug-on and bolt-on circuit breakers (cont'd.)

Circuit Breaker Pole Spac[38]	Mains Rating (Amps)	Interior Only Catalog Number (Order Branch Circuit Breakers Separately) [39][40]	Main Circuit Breaker Adapter Kits (Less Circuit Breaker)			NEMA Type 1 Enclosure, Catalog Numbers[41]					Water, Dirt, and Dust Resistant Enclosure Catalog Numbers[41] [42]		
			Main Circuit Breaker Kit	UL Service Entrance Barrier Kit [43]	Circuit Breaker Frame Size[44]	$\begin{aligned} & \text { Box } \\ & 20 \mathrm{in.Wx} \\ & 5.75 \mathrm{in} . \mathrm{D}[45] \text { or } \\ & 8.75 \mathrm{in} . \mathrm{D}[46] \\ & {[47]} \end{aligned}$	Mono- Flat ${ }^{\text {¹4 }}$ Trim Front [48]	Hinged Trim Front[48]	MonoFlat ${ }^{\text {TM }} 3$ Point Latch Trim Front [48][49]	Hinged 3 Point Latch Trim Front [48][49]	Type 3R/5/12 20in. Wide x 5.75 in. Deep [50]	Vented Type 3R 26 in. Wide $\times 8.75$ in. Deep[51]	Ht (l n.$)$
20-inch-wide Cabinet[52]-Three Phase 4-Wire													
$\begin{gathered} 15 \\ {[53]} \\ \hline \end{gathered}$	$\begin{aligned} & 15- \\ & 100 \\ & \text { bac- } \\ & \text { k-fed } \end{aligned}$	$\begin{aligned} & \hline \text { NQ418L1 } \\ & \hline \text { NQ418L1C } \end{aligned}$	-	-	$\begin{aligned} & \hline \text { Select } \\ & \text { 3-pole } \\ & \text { QOB or } \\ & \text { QOB- } \\ & \text { VH[54] } \\ & \hline \end{aligned}$	MH26, MH26BE	NC26 ()	NC26()HR	-	-	MH26WP	-	26
$\begin{gathered} 27 \\ {[53]} \\ \hline \end{gathered}$		NQ430L1				MH32, MH32BE	NC32 ()	NC32()HR	-	-	MH32WP	-	32
$\begin{gathered} \hline 24 \\ {[53]} \\ \hline 36 \\ {[53]} \\ \hline \end{gathered}$	$\begin{aligned} & 110- \\ & 150 \\ & \text { bac- } \\ & \text { k-fed } \end{aligned}$	NQ430L2 NQ430L2C NQ442L2 NQ442L2C			Select 3-pole QOB- VH[54] [55] [55]	MH44, MH44BE	NC44 ()	NC44()HR	-	-	MH44WP	-	44
$\begin{gathered} 48 \\ {[53]} \\ \hline \end{gathered}$		NQ454L2				MH50, MH50BE	NC50 ()	NC50()HR	-	-	MH50WP	-	50
$\begin{gathered} 66 \\ {[53]} \\ \hline \end{gathered}$		NQ472L2				MH56, MH56BE	NC56()	NC56()HR	-	-	MH56WP	-	56
$\begin{gathered} \hline 78 \\ {[53]} \\ \hline \end{gathered}$		NQ484L2				MH62, MH62BE	NC62()	NC62()HR	-	-	MH62WP	-	62
18	$\begin{aligned} & 15- \\ & 100 \end{aligned}$	NQ418L1	NQMB2HJ	NQHJQLLC	HD HG, HJ, HL, or HR	MH38, MH38BE	NC38()	NC38()HR	-	-	MH38WP	-	38
30		NQ430L1				MH44, MH44BE	NC44 ()	NC44()HR	-	-	MH44WP	-	44
	$\begin{aligned} & 15- \\ & 225 \end{aligned}$	NQ430L2	NQMB2HJ NQMB2Q	NQHJQLLC	HD[56], HG[56], HJ, HL, HR/56], JJ, JL, JR[56]; or QB, QG, QJ				-	-		-	
		$\frac{\text { NQ430L2C }}{\text { NQ442L2 }}$											
42		NQ442L2C				MH50, MH50BE	NC50 ()	NC50()HR	-	-	MH50WP	-	50
54		NQ454L2C											
72		$\begin{aligned} & \hline \text { NQ472L2 } \\ & \hline \text { NQ472L2C } \\ & \hline \end{aligned}$				MH56, MH56BE	NC56 ()	NC56()HR	-	-	-	-	56
84		NQ484L2				MH62, MH62BE	NC62 ()	NC62()HR	-	-	MH56WP	-	62
30	$\begin{aligned} & 125- \\ & 400 \end{aligned}$	NQ430L4	NQMB4LA	NQLALLC	$\underset{[57]}{\text { LA/LH }}$								
42		NQ442L4							NC62V()3P	NC62V()3PHR		MH62D9VWP	
54		NQ454L4				MH68, MH68BE	NC68V ()	NC68V()HR	NC68V()3P	NC68V()3PHR	MH68WP	MH68D9VWP	68
72		$\begin{aligned} & \hline \text { NQ472L4 } \\ & \hline \text { NQ472L4C } \\ & \hline \end{aligned}$				MH74, MH74BE	NC74V ()	NC74V()HR	NC74V()3P	NC74V()3PHR	MH74WP	MH74D9VWP	74
84		NQ484L4C				MH80, MH80BE	NC80V ()	NC80V()HR	NC80V() 3P	NC80V()3PHR	MH80WP	MH80D9VWP	80
30		NQ430L4	$\underset{\mathrm{L}}{\text { NQMB6P- }}$	NQPPLLLC	$\begin{gathered} \text { LG, LJ, } \end{gathered}$	MH62D9[46]	NC62V()	NC62V()HR	NC62V()3P	NC62V()3PHR	-	Factory Assembled Only	62
42		NQ442L4				MH68D9[46]	NC68V()	NC68V()HR	NC68V()3P	NC68V()3PHR	-		68
54		$\begin{aligned} & \hline \text { NQ454L4 } \\ & \hline \text { NQ454L4C } \\ & \hline \end{aligned}$				MH74D9[46]	NC74V()	NC74V()HR	NC74V()3P	NC74V()3PHR	-		74
72		$\begin{aligned} & \hline \text { NQ472L4 } \\ & \hline \text { NQ472L4C } \\ & \hline \end{aligned}$				MH80D9[46]	NC80V()	NC80V()HR	NC80V()3P	NC80V()3PHR	-	-	80
84		NQ484L4C				MH86D9[46]	NC86V()	NC86V()HR	NC86V() 3P	NC86V()3PHR	-	-	86
30	$\begin{aligned} & 125- \\ & 600 \end{aligned}$	NQ430L6C				MH62D9[46]	NC62V()	NC62V()HR	NC62V() 3P	NC62V()3PHR	-	Factory	62
42		NQ442L6C				MH68D9[46]	NC68V()	$\mathrm{NC68V}$ () HR	NC68V() 3P	NC68V()3PHR	-	Assembled	68
54		NQ454L6C				MH74D9[46]	NC74V()	NC74V()HR	NC74V() 3P	NC74V()3PHR	-	Only	74
72		NQ472L6C				MH80D9[46]	NC80V()	NC80V()HR	NC80V() 3P	NC80V()3PHR	-	-	80
84		NQ484L6C				MH86D9[46]	NC86V()	$\mathrm{NC86V}() \mathrm{HR}$	NC86V() 3P	NC86V()3PHR	-	-	86

[38] Please note that some local building codes limit panelboards to 42 circuits, including those that reference 2005 or earlier version of NFPA 70.
[39] Accepts all QO(B) shown in Tables in Sections 7 and 9 . Branch circuit breaker trip ampacity cannot exceed panelboard mains rating. 175 A and 200 A circuit breakers may only be installed in single phase 400 A and 600 A NQ Panelboards. Tandem circuit breakers may not be installed.
[40] "C" suffix indicates copper bussing.
[41] Enclosure height may increase if accessories including alternate neutral lugs, condo riser neutral assemblies, feed-thru lugs, or sub-feed lugs are installed. 26 in. wide enclosures and trim fronts are required if condo riser neutral assemblies are installed.
[42] Wall mounting brackets add 0.4 inches to back of MHxxWP enclosures.
[43] Please select the appropriate UL Service Entrance Kit for UL Service Entrance applications (see U.S. Service Entrance Barrier Kits, page 9-26).
[44] Circuit breaker interrupt ratings, see the table for each circuit breaker range in Section 7.
[45] Nominal interior dimensions, see PBA600 for details.
[46] D9 suffix indicates the 8.75 in. Deep Enclosure required for panelboards wit PowerPacT L Main Breaker, Switch, or Sub-Feed Breaker. See PBA604 for dimensional details.
[47] If Blank End Walls are desired at both ends of 5.75 " deep NEMA 1 Enclosure, select catalog number with "BE" suffix. Both end walls are blank in 8.75 " deep enclosures.
[48] Replace () with " F " for flush mount, or " S " for surface mount.
[49] Three point latch trim fronts are required for enclosures on panelboards with QO2175, QO2200, QO2175VH, or QO2200VH branch circuit breakers. These breakers take four pole spaces in single phase $N Q$ interiors.
[50] Enclosure includes trim kit. Nominal enclosure dimensions, see PBA711 for details.
[51] Vented Type 3R enclosure with three point latch door. Required for outdoor applications with PowerPacT L main breaker, two sub-feed breakers, or sub-feed breaker with trip current >150 A. NEMA 3R enclosures must be bottom fed. Interior nominal dimensions, see PBA603WP for details.
[52] For the NQ14-inch-wide panelboard offer, See NQ 14-inch-wide-240 Vac, 48 Vdc .
[53] Pole spaces shown are available for branch circuits, with spaces deducted for the back-fed main breaker.
[54] Do not select a back-fed main for panels to be "Suitable for use as UL service equipment." Select a H frame circuit breaker (and associated main circuit breaker kit) from the list for 225 interiors, for panels to be "Suitable for use as UL service equipment."
[55] QOB2110VH, QOB2125VH, or QOB2150VH take four pole spaces in NQ single phase interior
[56] For single phase applications, order a 3-pole breaker. Example: HDL36100.
[57] Available for 125-400 A applications. Please order short handle circuit breaker (i.e., LAL36400MB).

Online Refer to NQ Panelboards

14-inch wide NQ Panelboard Main Lug

Main Lug Panelboard

NQ 14-inch-wide-240 Vac, 48 Vdc ${ }_{[58]}$

Features

14-inch-wide NQ panelboards are available for those customers whose equipment space is limited. Developed with customer input, Square $D^{T M}$ brand NQ panelboards are built to last, featuring innovations for ease of installation and durability.

- $240 \mathrm{Vac}, 48 \mathrm{Vdc}$ maximum
- 225 A maximum main circuit breaker or main lugs
- 100 A maximum branch circuit breakers
- Visi-Trip ${ }^{\text {TM }}$ indication on branch circuit breakers
- 10,000-65,000 A Short Circuit Current Rating (SCCR)
- Interiors supplied with silver flashed copper bus as standard
- Interiors accept bolt-on and plug-on branch circuit breakers
- Three-phase, four-wire, and single-phase, three-wire interiors available
- Panelboards available with Mono-Flat ${ }^{T M}$ front
- May be suitable for use as service entrance equipment with neutral bonding kit and main circuit breaker barrier installed
- Branch circuit filler plates provide fast and easy installation
- Both fully and series-rated systems are available

Table 9.7: Main Lug Interiors-Accepts Plug-On and Bolt-On Branch Breakers

Max. Number of Breakers	$\begin{gathered} \text { Main } \\ \text { Ratings } \end{gathered}$	Interior Only (Order Branch Circuit Breakers Seperately) Cat. No.	NEMA Type 1 Enclosure		
			$\begin{aligned} & \text { Box } 14 \mathrm{in} . \mathrm{W} x \\ & 5.75 \mathrm{in} . \mathrm{Db} \end{aligned}$	Mono Flat Front	Hinged Front
			Cat. No.	Cat. No. [59]	Cat. No.
14-inch-wide Cabinet-Single Phase 3-Wire					
18	100 A	NQ18L1C14	NQB532	NQC32 ()	N/A
30		NQ30L1C14	NQB532	NQC32 ()	N/A
30	225 A	NQ30L2C14	NQB532	NQC32 ()	N/A
42		NQ42L2C14	NQB538	NQC38 ()	N/A
14-inch-wide Cabinet-Three Phase 4-Wire					
18	100 A	NQ418L1C14	NQB532	NQC32 ()	N/A
30		NQ430L1C14	NQB532	NQC32 ()	N/A
30	225 A	NQ430L2C14	NQB532	NQC32 ()	N/A
42		NQ442L2C14	NQB538	NQC38 ()	N/A

Table 9.8: Main Circuit Breaker Interiors-Accepts Plug-On and Bolt-On Branch Breakers

Max. Number of Breakers	Main Ratings	Interior Only (Order Branch Circuit Breakers Seperately) Cat. No.	MainCircuitBreaker Kit$[60]$	UL SE Barrier Kit	Main Circuit Breaker Frame	NEMA Type 1 Enclosure		
						Box 14 in. W x 5.75 in Db	Mono Flat Front	Hinged Front
						Cat. No. [61]	Cat. No. [59]	Cat. No.
14-inch-wide Cabinet-Single Phase 3-Wire								
16 [62]	100	NQ18L1C14	-	-	$\begin{gathered} \text { Select QOB 2- } \\ \text { pole or QOB-VH } \\ {[60]} \\ \hline \end{gathered}$	NQB532	NQC32 ()	N/A
28 [62]		NQ30L1C14	-	-		NQB532	NQC32 ()	N/A
30	225	NQ30L2C14	$\begin{gathered} \hline \text { NQMB2H- } \\ \text { j14 } \\ \text { or } \\ \text { NQMB2Q14 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { HJQL- } \\ & \text { LC } \end{aligned}$	$\begin{gathered} \text { HD, HG, HJ, } \\ \text { HL,HR JD, JG, } \\ \mathrm{JJ}, \mathrm{JL}, \mathrm{QB}, \mathrm{QD}, \\ \text { QG, QJ } \end{gathered}$	NQB544	NQC44 ()	N/A
42		NQ42L2C14				NQB550	NQC50 ()	N/A
14-inch-wide Cabinet-Three Phase 4-Wire								
15 [62]	100	$\begin{gathered} \hline \text { NQ418L1- } \\ \text { C14 } \\ \hline \end{gathered}$	-	-	Select QOB 3pole or QOB-VH [60]	NQB532	NQC32 ()	N/A
27 [62]		$\begin{gathered} \text { NQ430L1- } \\ \hline \mathrm{C} 14 \end{gathered}$	-	-		NQB532	NQC32 ()	N/A
30	225	$\begin{gathered} \text { NQ430L2- } \\ \text { C14 } \\ \hline \end{gathered}$		$\underset{\text { LC }}{\text { HJL- }}$	$\begin{gathered} \text { HD, HG, HJ, } \\ \text { HL, HR JD, JG, } \\ \mathrm{JJ}, \mathrm{JL,QB}, \mathrm{QD}, \\ \text { QG, QJ } \end{gathered}$	NQB544	NQC44 ()	N/A
42		$\begin{gathered} \text { NQ442L2- } \\ \text { C14 } \end{gathered}$				NQB550	NQC50 ()	N/A

Table 9.9: NQ Accessories Available on NQ 14" Panelboards

Description	
Equipment Ground Bars Catalog No.	
Aluminum (twenty seven terminations \#14 to \#4 AWG)	PK27GTA
PK23GTA+ \#1 to \#4/0 AWG Al or Cu lug	PK23GTAL
Copper (twenty seven terminations \#14 to \#4 AWG)	PK27GTACU
Ground Bar Insulator Kit	PKGTAB
Handle Attachments-Branch Circuit Breakers	
Handle lock-off	HLO1
Handle tie - QO and QOB only)	QO1HT
Handle padlock attachment—1-pole	QO1PA
2- and 3-pole	QO1PL
Handle tie and lock-off for three 1-pole (QO, QOB)	QO3HT
Other Accessories	
Filler plates (15 per package)	NQFP15

[58] DC voltage applications require installation of $D C$ rated $Q O(B)$ circuit breakers.
[59] Add " F " for flush mount, " S " for surface mount.
[60] Select a Q or H frame circuit breaker, HJQLLC barrier (and associated main circuit breaker kit) from the list for 225 interiors, for panels to be "Suitable for use as UL service equipment."
[61] All 14 in. W boxes come with blank endwalls.
[62] Pole spaces shown are available for branch circuits, with spaces deducted for the back-fed main circuit breaker.

QOB Bolt-On Circuit Breakers with Visi-Trip ${ }^{\text {TM }}$ Indicator for NQ Panelboards

NOTE: NQ panelboards also accept QO plug-on circuit breakers, see tables in Section 7, page 9-15 of the Digest. NQ panelboards with 175 or 200 A QO breakers require three point latch trim fronts.[63]
Table 9.10: QOB-GFI, QOB-EPD, and QOB-EPE Circuit Breakers

Ampere Rating [64]	One-pole	Two-pole-Common Trip	Three-pole-Common Trip	
	Catalog No.	Catalog No.	Catalog No.	Catalog No.
QOB-GFI-QOB Qwik-Gard ${ }^{\text {TM }}$ Circuit Breaker With Ground Fault Circuit Interrupter-UL Class A 4-6 mA People Protection. [65]				
	$120 \mathrm{Vac}-10 \mathrm{k} \mathrm{AIR}[66]$	$\begin{gathered} \hline 120 / 240 \mathrm{Vac}- \\ 10 \mathrm{k} \text { AIR[66] } \\ \hline \end{gathered}$	$\begin{gathered} 208 \mathrm{Y} / 120 \mathrm{Vac}- \\ 10 \mathrm{k} \mathrm{AIR} \\ \hline \end{gathered}$	
15 A	QOB115GFI	QOB215GFI	QOB315GFI	
20 A	QOB120GFI	QOB220GFI	QOB320GFI	
25 A	QOB125GFI	QOB225GFI	-	
30 A	QOB130GFI	QOB230GFI	QOB330GFI	
40 A	-	QOB240GFI	QOB340GFI	
50 A	-	QOB250GFI	QOB350GFI	
60 A	-	QOB260GFI[67]	-	
QOB-VHGFI [68]				
	$120 \mathrm{Vac}-22 \mathrm{k} \mathrm{AIR}$ [66]			
15 A	QOB115VHGFI			
20 A	QOB120VHGFI			
25 A	QOB125VHGFI			
30 A	QOB130VHGFI			
QOB-EPD-QOB Equipment protection circuit breakers with UL Listed 30 mA (EPD) or 100 mA (EPE) equipment protection.				
	$120 \mathrm{Vac}-10 \mathrm{k}$ AIR[66]	$\begin{gathered} 120 / 240 \mathrm{Vac}- \\ 10 \mathrm{k} \text { AIR[66] } \\ \hline \end{gathered}$	240 Vac-10 k AIR[66]	
15 A	QOB115EPD	QOB215EPD	QOB315EPD	QOB315EPE
20 A	QOB120EPD	QOB220EPD	QOB320EPD	QOB320EPE
25 A	QOB125EPD	QOB225EPD	-	-
30 A	QOB130EPD	QOB230EPD	QOB330EPD	QOB330EPE
40 A	-	QOB240EPD	QOB340EPD	QOB340EPE
50 A	-	QOB250EPD	QOB350EPD	QOB350EPE
60 A	-	QOB260EPD	-	-
QOB-VHEPD				
	$120 \mathrm{Vac}-22 \mathrm{k} \mathrm{AIR}$ [66]			
15 A	QOB115VHEPD			
20 A	QOB120VHEPD			
25 A	QOB125VHEPD			
30 A	QOB130VHEPD			
QOB-HM-High magnetic trip circuit breakers				
15 A	QOB115HM[69]			
20 A	QOB120HM[69]			
QOB-K-Key operated QOB circuit breakers [70]				
	120 Vac-10 k AIR[66]			
10 A	QOB110K			
15 A	QOB115K			
20 A	QOB120K			
25 A	QOB125K			
30 A	QOB130K			

[63] For QO plug-on circuit breakers, see the tables starting on Section 7, page 9-15 of the Digest.
[64] 10-30 A circuit breakers are suitable for use with $60^{\circ} \mathrm{C}$ or $75^{\circ} \mathrm{C}$ conductors. $35-60 \mathrm{~A}$ circuit breakers are suitable for use with $75^{\circ} \mathrm{C}$ conductors.
[65] Do not connect to more than 250 feet of load conductor for the total one-way run to prevent nuisance tripping.
[66] May be applied in 208Y/120 Vac systems.
[67] Suitable only for feeding 240 Vac and 208 Vac two-wire loads. Does not contain load neutral connection.
[68] Recommended for applications where high initial inrush may occur and for individual dimmer applications.
[69] UL Listed as SWD (switching duty) rated suitable for switching 120 Vac fluorescent lighting loads.
[70] Available in single pole construction and can be mounted in any single pole space which will accept a standard QOB. These circuit breakers can be turned ON or OFF or RESET with a special key (Catalog No. QOK10) included with the circuit breaker. These circuit breakers are UL Listed and available as shown in the table.
www.se.com/us
Table 9.11: Standard Interrupting QOB 10,000 AIR Circuit Breakers

Ampere Rating [71]	One-pole	Two-pole-Common Trip	Two-poleCommon Trip [72]	Three-poleCommon Trip
	Catalog No.	Catalog No.	Catalog No.	Catalog No.
QOB Bolt-On				
	$120 \mathrm{Vac}-10 \mathrm{k}$ AIR $48 \mathrm{Vdc}-5 \mathrm{k}$ AIR[73]	$\begin{gathered} \hline 120 / 240 \mathrm{Vac}-10 \mathrm{k} \\ \text { AIR } \\ 48 \mathrm{Vdc}-5 \mathrm{k} \text { AIR [74] } \\ {[73]} \\ \hline \end{gathered}$	$\begin{gathered} 240 \mathrm{Vac}- \\ 10 \mathrm{k} \text { AIR[73] } \end{gathered}$	240 Vac-10 k AIR $48 \mathrm{Vdc}-5 \mathrm{k}$ AIR [74] [73]
10 A	QOB110	QOB210	-	QOB310
15 A	QOB115[75][76]	QOB215[76]	QOB215H	QOB315[76]
20 A	QOB120[75][76]	QOB220[76]	QOB220H	QOB320[76]
25 A	QOB125[76]	QOB225[76]	QOB225H	QOB325[76]
30 A	QOB130[76]	QOB230[76]	QOB230H	QOB330[76]
35 A	QOB135[76]	QOB235[76]	-	QOB335[76]
40 A	QOB140[76]	QOB240[76]	QOB240H	QOB340[76]
45 A	QOB145[76]	QOB245[76]	-	QOB345[76]
50 A	QOB150[76]	QOB250[76]	QOB250H	QOB350[76]
60 A	QOB160[76]	QOB260[76]	QOB260H	QOB360[76]
70 A	QOB170[76]	QOB270[76]	QOB270H	QOB370[76][74]
80 A	-	QOB280[76] [74]	QOB280H	QOB380[76][74]
90 A	-	QOB290[76][74]	QOB290H	QOB390[76] [74]
100 A	-	QOB2100[76] [74]	QOB2100H	QOB3100[76] [74]
110 A	-	QOB2110[76] [74]	-	-
125 A	-	QOB2125[76] [74]	-	-
Molded Case Switch 60 A max-240 Vac		QOB200	-	QOB300
Molded Case Switch 100 A max-240 Vac		QOB2000	-	QOB3000

Table 9.12: High Interrupting QOB and Specialty Circuit Breakers[71]

Ampere Rating [71]	One-pole	Two-pole-Common Trip	Three-pole-Common Trip
	Catalog No.	Catalog No.	Catalog No.
QOB-VH			
	$120 \mathrm{Vac}-22 \mathrm{k} \mathrm{AIR}[73]$	120/240 Vac -22 k AIR[73]	240 Vac-22 k AIR[73]
15 A	QOB115VH[75][76]	QOB215VH[76]	QOB315VH[76]
20 A	QOB120VH [75][76]	QOB220VH[76]	QOB320VH[76]
25 A	QOB125VH[76]	QOB225VH[76]	QOB325VH[76]
30 A	QOB130VH[76]	QOB230VH[76]	QOB330VH[76]
40 A	QOB140VH	QOB240VH[76]	QOB340VH[76]
50 A	QOB150VH	QOB250VH[76]	QOB350VH[76]
60 A	QOB160VH	QOB260VH[76]	QOB360VH[76]
70 A	QOB170VH	QOB270VH[76]	QOB370VH[76]
80 A	-	QOB280VH[76]	QOB380VH[76]
90 A	-	QOB290VH[76]	QOB390VH[76]
100 A	-	QOB2100VH[76]	QOB3100VH[76]
110 A	-	QOB2110VH[76]	QOB3110VH [77]
125 A	-	QOB2125VH[76]	QOB3125VH [77]
150 A	-	QOB2150VH [77]	QOB3150VH [77]
QHB			
	$120 \mathrm{Vac}-65 \mathrm{k} \mathrm{AIR}$ [73]	$\begin{gathered} 120 \mathrm{Vac} / 240 \mathrm{Vac}-65 \mathrm{k} \mathrm{AIR} \\ {[73]} \end{gathered}$	240 Vac-65 k AIR[73]
15 A	QHB115 [75]	QHB215[76]	QHB315[76]
20 A	QHB120 [75]	QHB220[76]	QHB320[76]
25 A	QHB125[76]	QHB225[76]	QHB325[76]
30 A	QHB130[76]	QHB230[76]	QHB330[76]
QOB-HID-HID circuit breakers [78]			
	120 Vac-10 k AIR[73]	120/240 Vac-10 k AIR[73]	240 Vac-10 k AIR[73]
15 A	QOB115HID [75]	QOB215HID	QOB315HID
20 A	QOB120HID [75]	QOB220HID	QOB320HID
25 A	QOB125HID	QOB225HID	QOB325HID
30 A	QOB130HID	QOB230HID	QOB330HID
40 A	QOB140HID	QOB240HID	-
50 A	QOB150HID	QOB250HID	-
QOB-SWN-Switch Neutral-Common Trip-NEC 514.11			
		$\begin{gathered} \text { 1-pole-2-Wire } \\ 2 \text { Spaces -120 Vac[73] } \end{gathered}$	$\begin{gathered} \text { 2-pole-3-Wire } \\ 3 \text { Spaces-120/240 Vac[73] } \end{gathered}$
10 A	-	QOB210SWN	QOB310SWN
15 A	-	QOB215SWN	QOB315SWN
20 A	-	QOB220SWN	QOB320SWN
25 A	-	QOB225SWN	QOB325SWN
30 A	-	QOB230SWN	QOB330SWN
40 A	-	QOB240SWN	QOB340SWN
50 A	-	QOB250SWN	QOB350SWN

[71] 10-30 A circuit breakers are suitable for use with $60^{\circ} \mathrm{C}$ or $75^{\circ} \mathrm{C}$ conductors. $35-60 \mathrm{~A}$ circuit breakers are suitable for use with $75^{\circ} \mathrm{C}$ conductors.
[72] UL Listed 5,000 AIR on $3 \varnothing$ corner grounded delta systems.
[73] May be applied in 208Y/120 Vac systems.
[74] DC Rating is not available on indicated products.
[75] UL Listed as SWD (switching duty) rated suitable for switching 120 Vac fluorescent lighting loads.
[76] UL Listed as HACR type for use with air conditioning, heating, and refrigeration equipment having motor group combinations and marked for use with HACR type circuit breakers.
[77] QOB2150VH uses 4 pole spaces. QOB3110VH, QOB3125VH, and QOB3150VH each use 6 pole spaces. 40A maximum circuit breaker mounted opposite. Use with $75{ }^{\circ} \mathrm{C}$ wire only.
[78] UL Listed for use on circuit feeding fluorescent and High Intensity Discharge (HID) lighting systems such as mercury vapor, metal halide, or high pressure sodium. These circuit breakers are physically interchangeable with QOB circuit breakers.

Table 9.13: QO/QOB Circuit Breaker Wire Sizes

Breaker Type	Ampere Rating	Wire Size (AWG or kcmil)	
		Al	Cu
$\begin{gathered} \text { QOB } \\ \text { 1-pole } \end{gathered}$	10-30 A	\#14-8	\#14-8
	10-30 A	-	two \#14-10
	35-70 A	\#8-2	\#8-2
$\begin{gathered} \text { QOB } \\ \text { 2-pole } \end{gathered}$	10-30 A	\#14-8	\#14-8
	10-30 A	-	two \#14-10
	35-70 A	\#8-2	\#8-2
	80-125 A	\#4-2/0	\#4-2/0
	150-200 A	\#4-300	\#4-300
$\begin{gathered} \text { QOB } \\ \text { 3-pole } \end{gathered}$	10-30 A	\#14-8	\#14-8
	35-70 A	\#8-2	\#8-2
	80-125 A	\#4-2/0	\#4-2/0
QOB-VH	110-150 A	\#4-300	\#4-300
$\begin{gathered} \text { QOB-GFI and } \\ \text { QOB-EPD } \end{gathered}$	15-30 A	\#12-8	\#14-8
	40, 50, or 60 A	\#12-4	\#14-6

Table 9.14: QO ${ }^{\text {Tw }}$ Arc-Fault and Dual Function Circuit Breakers [79][80][81]

Circuit Breaker Type	Ampere Rating [81]	$\begin{gathered} \hline 1 \mathrm{P} 120 \mathrm{Vac} \\ 10 \mathrm{kAIR} \\ 1 \text { Space } \\ \text { Required } \\ \hline \end{gathered}$	$1 \mathrm{P} 120 \mathrm{Vac}$ 22 kAIR 1 Space Required	$\begin{gathered} \hline \text { 2P } 240 \mathrm{Vac} \\ 10 \mathrm{kAIR} \\ 2 \text { Space } \\ \text { Required } \\ \hline \end{gathered}$	2P 240 Vac 22 kAIR 2 Space Required
		Catalog Number	Catalog Number	Catalog Number	Catalog Number
Combination Arc-Fault Interupter	15 A	QOB115CAFI	QOB115VHCAFI	QOB215CAFI	QOB215VHCAFI
	20 A	QOB120CAFI	QOB120VHCAFI	QOB220CAFI	QOB220VHCAFI
Dual Function: Arc-Fault and Ground Fault	15 A	QOB115DF	QOB115VHDF	Use plug-on QO 2-pole dual function MCBs	
	20 A	QOB120DF	QOB120VHDF		

NOTE: For accessories, see Accessories for QO/QOB Circuit Breakers, in Section 7.
Single Phase 400 or 600 A NQ Panelboards now accept 150, 175, and 200 A Two Pole QO Plug-on Branch Circuit Breakers.
Each breaker takes four pole spaces. Installation into three phase interiors is not allowed as it may create a phase to phase short circuit.
One NQ200AN neutral lug kit should be installed for each pair of 175 or 200 A QO breakers if a neutral termination is required.

- One Q1150AN lug kit should be installed for each 110 to 150 A QO(B) circuit breaker, if a neutral termination is required.

Table 9.15: High Ampacity Plug-on Two Pole QO Branch Circuit Breakers

Catalog Number	Ampere Rating	AIC Rating
QO2150	150	10 kA
QO2150VH	150	22 kA
QO2175	175	10 kA
QO2200	200	20
QO2175VH	175	22 kA
QO2200VH	200	2

NOTE: May only be installed on Single Phase 400 or 600 A NQ Panelboards with three point latch trim fronts.

A maximum of four 150, 175, or 200 A QO (VH) plug-on branch circuit breakers may be installed in NEMA 1 enclosures. These enclosures require NCxxV () 3P three point latch trim fronts, as listed in Table 9.5 Main Lug Interiors, page 9-11 or Main Circuit Breaker Interiors, page 9-12.

One 150, 175, or 200 A QO (VH) plug-on branch circuit breaker may be installed in 8.75 in. deep MHxxD9VWP NEMA 3R enclosures, as listed in Table 9.5 Main Lug Interiors, page 9-11 or Main Circuit Breaker Interiors, page 9-12.
[79] UL Listed as HACR type for use with air conditioning, heating, and refrigeration equipment having motor group combinations and marked for use with HACR type circuit breakers.
[80] QO arc-fault circuit breakers provide branch feeder protection (for example, QO115AFI) or combination protection (for example, QO115CAFI) as required by the NEC and local code adoption, and comply with UL 1699.
[81] 10-30 A circuit breakers are suitable for use with $60^{\circ} \mathrm{C}$ or $75^{\circ} \mathrm{C}$ conductors. $35-60 \mathrm{~A}$ circuit breakers are suitable for use with $75^{\circ} \mathrm{C}$ conductors.

Factory Assembled Main Circuit Breakers
400 A and 600 A panelboards, $1 \varnothing$ or $3 \varnothing$
Table 9.16: NQ Panelboard Factory Assembled Interiors - 240 Vac / 48 Vdc Max

Single Phase or Three Phase						
Mains Rating (Amps)			Max. Number of One-Pole Circuit Breakers	Bus Material	Min. Box Depth	
$\begin{aligned} & \text { Main Lugs } \\ & \text { Only } \end{aligned}$	Main Circuit Breaker[82]	Main Switch [82]			Main Lugs Only	Main Circuit Breaker / Switch
100 Max	15-100	70-100	18, 30	Al, Cu	5.75 in.	5.75 in.
225 Max	15-250	110-250	30, 42, 54, 72, 84	Al, Cu	5.75 in.	5.75 in.
400 Max	125-400	300-400	$\begin{gathered} 30,42,54,72[83], \\ 84[84] \end{gathered}$	Al, Cu	5.75 in.	$\begin{gathered} 5.75 \mathrm{in} . / 8.75 \mathrm{in} . \\ {[85]} \end{gathered}$
600 Max	125-600	450-600	$\begin{gathered} 30,42,54,72[83], \\ 84 \\ \hline \end{gathered}$	Cu	5.75 in.	8.75 in.[85]

Table 9.17: Main Circuit Breaker (PowerPacT L-frame - see PowerPacT Interrupting Ratings, and Common Catalog Numbering System, in Section 7)

Number of Poles	Trip Unit Options	Frame Sizes	Ampacity
3	LI, LSI, Switch	LG, LJ, LL	$125-600 \mathrm{~A}$

LA/LH PowerPacT H, J, and Q-frame circuit breakers are also available - see Table 7.47 and Table 7.48 and Supplemental Digest Section 3.

Table 9.18: PowerPacT L Main Circuit Breaker Cabinet Height (inches)

Max. No. of Branch Spaces (Does not include sub-feed circuit breaker spaces)	NEMA 1 Enclosure (20 in. W x 8.75 in . D)[85]	Vented NEMA 3R Enclosure (26 in. W x 8.75 in. D) [86]	
	400 or 600 A	400 A	600 A
30	62	62	68
42	68	68	74
54	74	74	80
72	80	-	-
84	86	-	-

Sub-feed Circuit Breakers

Main lugs or main circuit breaker interior- $1 \varnothing$ or $3 \varnothing$.
Maximum 1 circuit breaker per 225 A main lug or 250 A main circuit breaker panelboard, 2 PowerPacT H-, J-, or Q-frame sub-feed circuit breakers may be installed on a 400600 A panelboard.
Panelboards in MHxxWP NEMA Type 3R/5/12 enclosures are limited to one 150 A maximum sub-feed breaker.

- Panelboards in vented MHxxD9VWP NEMA 3R enclosures may have two 225 A maximum sub-feed circuit breakers. A single 600 A maximum sub-feed circuit breaker may be factory installed in these new enclosures.
Table 9.19: Sub-feed Circuit Breakers for NQ Panelboards[87]

Interior Rating	Sub Feed Circuit Breakers[87]			Space Factor
	Ampacity	Poles	MCCB Frame	
225 A	70-225	2 or 3	QB, QD, QG, QJ	18 in.
	110-150	2 or 3	HD, HG, HJ, HL, HR[88]	
	150-225	2 or 3	JD, JG, JJ, JL, JR[89]	
400 A / 600 A	70-225	2 or 3	QB, QD, QG, QJ[90]	24 in.
	110-150	2 or 3	HD, HG, HJ, HL, HR[88]. [90]	
	150-225	2 or 3	JD, JG, JJ, JL, JR[89]: [90]	
	125-400	2 or 3	LA / LH	18 in.[91]
	125-600	3	LG, LJ, LL	18 in.[92]

PowerPacT H, J, \& L frame circuit breakers are also available - see Tables PowerPacT Interrupting Ratings, and
Common Catalog Numbering System, Section 7 .

82] Factory Assembled Interiors are rated for trip current of Main Breaker / Switch
[83] Three Phase only.
[84] Copper only.
[85] D9 8.75 in. deep enclosures are required for PowerPacT L Main Circuit Breaker, Switch, or Sub-Feed Circuit Breaker. Reference PBA713x drawing for more dimensional information, where x may be A, HR, HRT, or T depending upon the choice of options and enclosure.
[86] Feed-thru lugs and compression lugs available factory assembled only. These add 6-12 inches to enclosure length. Please reference PBA755 or PBA755T for more complete dimensional information, where x may be A, HR, HRT, or T depending upon the choice of options and enclosure.
[87] See Digest Section 7 for Interrupting Ratings and Catalog Numbers of PowerPacT H-, J-, L-, Q- and LA/LH frame MCCBs.
[88] Three pole HD, HG, HR MCCBs are installed for single phase sub-feed circuit breaker applications.
[89] Three pole JR MCCBs are installed for single phase sub-feed circuit breaker applications.
[90] One or two sub-feed circuit breakers may be selected.
 assemblies.
 supplied with 26 in. wide, 8.75 in. deep enclosures and have Condo Riser neutral assemblies.

Table 9.20: PowerPacT H, J, or Q-frame Sub-feed Circuit Breaker Cabinet Height (inches)[93]

Max. No. of Branch Circuit Spaces (not including sub-feed circuit breaker)	Mains Type and Maximum Current Rating				
	225 A Main Lugs[94]	250 A Main Circuit Breaker[95]	$\begin{gathered} 400 / 600 \mathrm{~A} \\ \text { Main Lugs } \\ {[96]} \end{gathered}$	400 A LA/LH Main Circuit Breaker[97]	$400 / 600 \mathrm{~A}$ LG/LJ/LL Main Circuit Breaker[98]
30	50	62	74	86	86
42	56	68	74	86	86
54	62	74	80	92	-
72	68	80	86	-	-
84	74	86	92	-	-

Table 9.21: PowerPacT LG, LJ, or LL Sub-feed Circuit Breaker Cabinet Height (inches) [99]

Max. No. of Branch Spaces (Does not include sub-feed circuit breaker spaces)	NEMA 1 D9 Enclosure (8.75-in. D)[100]			Vented NEMA 3R Enclosure Height (26-in. W x 8.75-in. D)			
	20-in. Wide		26-in. Wide	Main Lugs	Main Circuit Breaker[100]		
	Main Lugs	LA / LH Main Circuit Breaker	$\begin{aligned} & \text { LG /LJ/ } \\ & \text { LL[100] } \\ & \hline \end{aligned}$				
			Main		LA / LH	400A PP-L	600A PP-L
30	68	80	80	74	74	86	92
42	68	80	86	74	80	86	92
54	74	86	92	80	86	92	-
72	80	92	-	-	-	-	-
84	86	-	-	-	-	-	-

Table 9.22: Weather and Dust Resistant Enclosures-Type 3R, 4, 4X, 5, 12

Weatherproof or Dusttight Cabinets
NOTE: NQ panelboards with PowerPacT L circuit breakers are not available with a NEMA Type 4, 4X, 5, or 12 enclosure. (Use I-Line).

NQ panelboards with PowerPacT L circuit breakers are available with vented 26 in. wide NEMA 3R enclosures. These vented NEMA 3R enclosures also enable selection of subfeed circuit breakers up to 600 A .
400 A NQ panelboards in NEMA 4, 4X, 5, or 12 enclosures are available with one subfeed breaker up to 150 A .

Table 9.23: Optional Factory Assembled Lugs for Main Lugs Only and Main Circuit Breaker Interiors

Incoming Lug Type:
Aluminum Compression Lugs
Copper Mechanical Lugs
Copper Compression Lugs

NOTE: Optional lugs are not available for Q frame main or QOB circuit breakers.

Sub-feed Lugs

NOTE: Available on main lug interiors only, $1 \varnothing$ or $3 \varnothing$.

Table 9.24: Sub-feed Lug Wire Range Per Phase (AWG or kcmil)

Mains Rating	Incoming	Outgoing
100	one \#6-2/0 Al or Cu	one \#6-2/0 Al or Cu
225	one $1 / 0-350 \mathrm{kcmil} \mathrm{Al}$ or Cu	one $1 / 0-350 \mathrm{kcmil} \mathrm{Al}$ or Cu
400	one $1 / 0-750 \mathrm{kcmil} \mathrm{Cu}$ only	one $1 / 0-750 \mathrm{kcmil} \mathrm{Cu}$ only

Table 9.25: Sub-feed Lug Cabinet Data

Max. No. of Branch Spaces	Box Height (20 in. W x 5.75 in. D)		
	100 A	225 A	400 A
18	MH 26	-	-
30	MH 22	MH 38	MH 50
42	-	MH 44	MH 50
54	-	MH 44	MH 50
72	-	MH 50	MH 62
84	-	MH 56	MH 68

[93] Bottom feed only in NEMA Type 3R enclosures. NEMA 3R applications with sub-feed circuit breakers greater than 150 A require 8.75 in. deep, 26 in. wide enclosure - reference PBA603WP.
[94] Reference PBA701x drawing for more dimensional information. PBA701x - x may be A, E, HR, HRT, or T, depending upon choice of options and trim front.
[95] Reference PBA707x drawing for more dimensional information. PBA707x - x may be A, E, HR, HRT, or T, depending upon choice of options and trim front.
 require 8.75 in . deep, 26 in . wide enclosure - reference PBA603WP. PBA709x - x may be A, E, HR, HRT, or T, depending upon choice of options and trim front.
 require 8.75 in . deep, 26 in . wide enclosure - reference PBA603WP. PBA710x - x may be A, E, HR, HRT, or T depending upon choices of options and trim front.
[98] LG, LJ, or LL Main Circuit Breaker requires D9 8.75 in. enclosure. Reference PBA713x or PBA755x drawing for more dimensional information. PBA\#\#\#x - x may be A, E, HR, HRT, or T, depending upon choice of options and enclosure.
[99] Feed-thru lugs and compression lugs available factory assembled only. These add 6-12 inches to enclosure length.
[100] NQ Panelboards with PowerPacT L Main Circuit Breaker and PowerPacT L Sub-Feed Circuit Breaker are supplied with Condo Riser Neutral Assemblies, and require 26 in. wide, 8.75 in. deep enclosures.

Online Refer to NQ Panelboards

Feed-through Lugs

Table 9.26: Feed-through Lugs

Mains Rating	Feed-Through Wire Range Per Phase (AWG or kcmil)
100 A	one \#6-2/0 Al or Cu
225 A	one \#6-350 Al or Cu
400 A	one $1 / 0-750$ or two $1 / 0-350 \mathrm{Al}$ or Cu
600 A	two $1 / 0-750 \mathrm{Al}$ or Cu

Table 9.28: Name Plates

Name Plates

Standard white face/black letter laminated bakelite
1 in. x 3.5 in., adhesive backed or screw mountable with
screws in a bag assembly

Table 9.27: Feed-through Lugs Cabinet Data

Max. No. of Branch Spaces	Main Lugs					
	$\mathbf{2 2 5} \mathbf{A}$	Main Circuit Breaker	Main Lugs	Main Circuit Breaker	Main Lugs	Main Circuit Break- er [101]
	38	50	50	62	62	68
42	38	50	56	68	62	80
72	50	62	68	80	74	-
84	56	68	68	80	80	-

Table 9.29: Copper Bus Bars

Copper Bus Bars

100 A, 225 A, 250 A
400 A
400 A

Table 9.30: NQ Panelboard Neutral Assembly Options

Interior Rating	Without Sub-Feed or Thru-Feed Lugs				With Sub-Feed or Thru-Feed Lugs			
	100\% Neutrals		200\% Neutrals		100\% Neutrals		200\% Neutrals	
	Aluminum	Copper	Aluminum	Copper	Aluminum	Copper	Aluminum	Copper
100 A	Standard	NQN1CU	NQNL1	Factory Assembled Only	Standard	NQN1CU	NQNL1	Factory Assembled Only
225 A		NQN2CU	NQNL2			NQN2CU	NQNL2ACCY	
400 A		NQN6CU	NQNL4			NQN6CU	FA Only[102]	
600 A[103]			Not Available	Not Available			Not Available	Not Available

Table 9.31: NQ Main 100\% and 200\% Rated Neutral Conductors-(Quantity) and Wire Size (Mechanical Lugs \& Compression Lugs)[104]

Interior Rating	$\operatorname{Lug}_{\text {Material }}$	Mechanical Neutral Line Lugs						Compression Neutral Line Lugs	
		100\% Rated			200\% Rated[105]			100\% Rated	200\% Rated[105]
		Standard Neutral Assemblies	Oversized Neutral Assemblies		Standard Neutral Assemblies	Oversized Neutral Assemblies			
		Lug Wire Range	Lug Wire Range	Space Factor	Lug Wire Range	Lug Wire Range	Space Factor	Lug Wire Range	Lug Wire Range
100 A	$\begin{aligned} & \mathrm{Al} \\ & \mathrm{Cu} \\ & \hline \end{aligned}$	(1) \#6-2/0	$\begin{gathered} \text { select } 225 \mathrm{~A} \\ \text { neutral assembly } \end{gathered}$	N/A	(2) \#6-2/0	select 225 A neutral assembly	N/A	(1) \#6-2/0	(1) \#6-2/0
225 A	Al	$\begin{gathered} \hline \text { (1) } \# 6-300 \mathrm{kcmil} \\ {[106]} \\ \hline \end{gathered}$	$\begin{gathered} \text { select } 400 \mathrm{~A} \\ \text { neutral assembly } \end{gathered}$	N/A	(2) \#6-350 kcmil	select 400 A neutral assembly	N/A	(1) \#4-300 kcmil	(2) \#1/0-300
	Cu	(1) \#6-250 kcmil			(2) $\# 6-250 \mathrm{kcmil}$			(1) \#2/0-300 kcmil	(2) \#2/0-300 kcmil
400 A	Al	(2) $1 / 0-300 \mathrm{kcmil}$ or (1) $1 / 0-700 \mathrm{kcmil}$ [107]	(2) $1 / 0-750 \mathrm{kcmil}$ or (4) $1 / 0-300 \mathrm{kcmil}$	6	(4) $1 / 0-300 \mathrm{kcmil}$	(4) $1 / 0-750 \mathrm{kcmil}$ or (8) $1 / 0-300 \mathrm{kcmil}$	6	(2) $2 / 0-500 \mathrm{kcmil}$	(4) $2 / 0-500 \mathrm{kcmil}$
	Cu				$\begin{gathered} \text { (2) } 1 / 0-700 \mathrm{kcmil} \\ {[107]} \end{gathered}$			(2) $400-750 \mathrm{kcmil}$	(2) $400-750 \mathrm{kcmil}$
	Al	(4) $1 / 0-300 \mathrm{kcmil}$ or (2) $1 / 0-700 \mathrm{kcmil}$ [107]	(4) $1 / 0-700 \mathrm{kcmil}$ [107] or (8) 1/0-300 kcmil	6	N/A	N/A	N/A	(2) $2 / 0-500 \mathrm{kcmil}$	N/A
600 A	Cu								
600 A (with NQALMN6 or NQCUMN6)	Al Cu	N/A	(6) $1 / 0-750 \mathrm{kcmil}$ or (4) $1 / 0-300 \mathrm{kcmil}$ and (4) 1/0-750 kcmil	12	N/A	N/A	N/A	N/A	N/A

NOTE: Implicit AWG (American Wire Gauge) abbreviation on conductors wire range (kcmil is shown).
Gutter extensions may be required to provide NEC wire bending space for cable(s) of maximum lug size.

Table 9.32: NQ Panelboard Condo Riser Neutral Panelboards
(Requires 26 in. Wide Enclosure) [108]

Interi- or Rating	Maximum Branch Circuits	Neutral Rating	Neutral Assembly	Mains Options			Load End Options		Minimum Enclosure Depth	
				Main Lugs	Main Circuit Breaker	Sub- Feed Lugs	FeedThru Lugs	Sub- Feed Brea- ker		
$\begin{aligned} & 4001 \\ & 600 \mathrm{~A} \end{aligned}$	42	100\%	NQN6CRUS	Y	LA / LH	N/A	Y	$\begin{aligned} & \mathrm{H}, \mathrm{~J}, \\ & \mathrm{Q}, \mathrm{LA} \\ & \mathrm{LH} \\ & \hline \end{aligned}$	5.75-in.	12
		200\%	NQNL6CRUS							
	72[110]	100\%	NFN6CR	Y	$\begin{gathered} \hline \mathrm{LA}, \mathrm{LG}, \mathrm{LH}, \\ \mathrm{LJ}, \mathrm{LL} \end{gathered}$	Y	Y	Y	8.75-in.	$0-12$
		200\%	NFNL6CR							

600 A NQ Main Breaker Panelboard with Condo Riser Neutral Assembly

[101] 8.75 in. deep box, ship fully assembled only.

[102] FA - Factory Assembled Panelboards
[103] 600 A main circuit breaker panelboards with PowerPacT L sub-feed circuit breakers are supplied with Condo Riser Neutral Assemblies and require 26 in. wide, 8.75 in. deep enclosures.
[104] Lug Wire Ranges shown meet NEC wire bending space. Lugs may accept larger cables if enclosure size is increased.
[105] 200\% Neutrals not available on Column Width interiors.
1106] Installation of 350 kcmil netural conductors possible is enclosure is extended to increase wire bending space.
[107] Installation of 750 kcmil neutral conductors possible if enclosure is extended to increase wire bending space.
[108] Select 26 in. Wide Condo Riser Panel under Structure Options in the SE Advantage Panelboard Product Selector.
[109] Space factor is the additional enclosure length required for selected option. Additional required length may be reduced or eliminated if load end options like feed-thru lugs or sub-feed circuit breakers require a space factor of at least 12 inches.
[110] May be used with a 84 circuit interior when a SurgeLoc SPD is installed. No more than 72 branch circuit breaker poles may be installed.

Table 9.33: Metal Directory Frames
Metal Directory Frame
Replaces standard plastic stick-on directory pouch, add "WMD" suffix to NC Trim catalog number.

Table 9.34: NQ Equipment Ground Bar Kits[111]

Interior Rating	Aluminum	Copper	Ground Bar Insulator Kit
$100 \mathrm{~A} / 225$ A	PK12GTA, PK18GTA, PK23GTA, or PK27GTA	PK27GTACU	PKGTAB
$400 \mathrm{~A} / 600 \mathrm{~A}$	PK12GTA, PK27GTA	PK27GTACU	PKGTAB

Table 9.35: Hinged Door-in-Door Trim Fronts
Hinged Door-in-Door Trim Front
Hinged Door-in-Door Trim Front has piano hinge down one side.
Inner door has a lock, outer door is retained with screws
Hinged Door-in-Door Trim Fronts with Outer Door Lock in place of screws are available as a factory assembled option.

NQ with Surge Protective Devices

Table 9.36: Surgelogic ${ }^{\text {TM }}$ SurgeLoc Plug-On SPD ${ }_{[112]}$

Surge Current Rating kA
80 kA
100 kA
120 kA
160 kA
200 kA
240 kA

Table 9.37: Surgelogic SPD Features

Description

Surge Counter
Dry Contacts
Remote Monitor
NOTE: Additional factory modifications, see Modifications For Factory Assembled Panelboards, page 9-67.

NQ Merchandised Accessories

Table 9.38: NQ Merchandised Neutral Assemblies

Mains Rating (Amps)	200\% Neutral Kit		Copper 100\% Neutral Kit	
	Catalog No.	Space Factor	Catalog No.	Space Factor
100	NQNL1	0	NQN1CU	0
225	NQNL2	0	NQN2CU	0
225	NQNL2ACCY[113]	6		
400	NQNL4[114]	0	NQN6CU	0
600	-	0		

Table 9.39: NQ Merchandised Sub-feed Lugs, Feed-through Lugs, and Sub-feed Breaker Kits

Mains Rating	Sub-feed Lugs Catalog Number	Feed-through Lugs Catalog Number	Sub-feed Circuit Breaker Kits (breaker not incl.)	
			Single SFB	Two SFBs
100 A	NQSFL1	100 A not available; use 225 A interior	-	-
225 A	NQSFL2	NQFTL2L[115]	NQSFB2Q or NQSFB2HJ[116]	-
		NQFTL2H[117]		
400 A	NQSFL4	NQFTL4L[115]	NQSFB4Q or NQSFB4HJ or NQMB6PPL[118][116]	NQSFB4Q or NQSFB4HJ
		NQFTL4H[117]		
600 A	Not Available	Factory Assembled Only	NQSFB6PPL[118] or NQMB6PPL	Factory Assembled Only

NOTE: See Table 9.40 and Table 9.41.
Table 9.40: Box Selection Table: Merchandised NQ Main Lug Panelboards with Accessories

Feature Circuits	Sub-feed Lugs				Feed-through Lugs				Sub-feed Circuit Breakers				
	100 A	225 A	400 A	600 A	100 A	225 A	400 A	600 A	100 A	225 A (one)	400 A (two)	$\begin{aligned} & 400 \mathrm{~A} / 600 \mathrm{~A} \\ & \text { (one) } \\ & \hline \end{aligned}$	600 A (two)
18	MH26	-	-	Factory Assembled Only	-	-	-	Factory Asssembled Only	-	-	-	-	Factory Asssembled Only
30	MH32	MH38	MH50		Use 225 A Interior	MH38	MH50		-	MH50	MH74	MH62D9	
42	-	MH44	MH50			MH38	MH56		-	MH56	MH74	MH62D9	
54	-	MH44	MH56			MH44	MH62		-	MH56	MH80	MH68D9	
72	-	MH50	MH62			MH50	MH68		-	MH62	MH86	-	
84	-	MH56	MH68			MH56	MH68		-	MH68	MH92	-	

Table 9.41: Box Selection Table: Merchandised NQ Vertically Mounted Main Breaker Panelboards w/ Accessories (by Mains Rating)

Feature Circuits	Feed-through Lugs					PowerPacT H, J, or Q Sub-feed Circuit Breakers (Max Amp and Qty)				
	100 A	225 A	400 A		600 A	100 A	225 A (one)	400 A (two SFB)		600 A (two SFB)
			LA / LH MB	PowerPacT L MB				LA / LH MB	PowerPacT L MB	
18	-	-	-	-	-	-	-	-	-	-
30	-	MH50	MH62	MH68D9	Factory Asssembled Only	-	MH62	MH86	MH86D9	Factory Asssembled Only
42	-		MH68			-	MH68			
54	-	MH56	MH74	MH74D9		-		MH92	-	
72	-	MH62	MH80	MH80D9		-	MH74	[119]	-	
84	-	MH68	MH80	MH86D9		-	MH80	[119]	-	

Table 9.42: NQ Optional Lugs

[113] For 225 A panel with SFL, FTL, or SFB.
[114] Not to be used with SFL, FTL, or SFB. These combinations are factory assembled only
[115] The final character L indicates the kit is used for Low circuit count interiors 30 and 42.
[116] 3-pole HD, HG or HR sub-feed circuit breaker should be selected for single phase 110-150 A applications.
[117] The final character H indicates the kit is used for High circuit count interiors 54, 72, and 84.
[118] PowerPacT L Circuit Breakers require 8.75 in. deep enclosures.
[119] Requires box longer than available box offer.
[120] Quantity of terminations is the same for copper and aluminum neutral assemblies.
 shown in that row of the table. 2) the capacity for NQ100AN is reduced by twice the quantity of NQ200AN and Q1150AN installed.
 (VH) circuit breaker.
[123] Not allowed in 100 A NQ panelboards.
[124] One NQ200AN is required provide neutral termination for every two 175-200 A QO (VH) circuit breakers.
[125] Number of Terminations Required to Install Add-on Lug to NQ Neutral assembly. Lugs may block 1-4 additonal terminations depending upon where each is installed.
www.se.com/us
Table 9.43: NQ Accessories

Description	Catalog No.
Sub-feed Lug (Bolt-on)	
2-pole QOB Branch Mounted Sub-feed Lug Kit	QOB2125SL
3-pole QOB Branch Mounted Sub-feed Lug Kit	QOB3125SL
Equipment Ground Bars (Lug and terminal sizes shown are AWG)	
Aluminum (\#6 to 2/0 Cu or Al lug , \#14-\#4 Cu or \#12-\#4 Al terminals)	PK27GTA
PK23GTA+ \#1 to \#4/0 Al or Culug	PK23GTAL
Copper (\#14 to \#1 Cu lug, \#14-\#4 Cu terminals)	PK27GTACU
Ground Bar Insulator Kit	PKGTAB
Aluminum (twenty seven terminations \#14 to \#4 AWG)	PK27GTA
PK23GTA+ \#1 to \#4/0 AWG Al or Cu lug	PK23GTAL
Copper (twenty seven terminations \#14 to \#4 AWG)	PK27GTACU
Ground Bar Insulator Kit	PKGTAB
Circuit I.D. Number Strips	
1-102 odd/even (left side numbered 1,3,5 ...101)	NQ102OE
103-204 odd/even (left side numbered 103,105,107 ... 203)	NQ204OE
1-102 sequential (left side numbered 1,2,3 ... 102)	NQ102S
103-204 sequential (left side numbered 103,104,105 ... 204)	NQ204S
Rail and Deadfront Extensions	
6 in. Extension	NQ6RDE
12 in . Extension	NQ12RDE
18 in. Extension	NQ18RDE
24 in. Extension	NQ24RDE
Handle Attachments-Branch Circuit Breakers	
Handle lock-off	HLO1
Handle tie - (QO and QOB only)	Q01HT
Handle padlock attachment-1-pole	Q01PA
2-and 3-pole	Q01PL
Handle tie and lock-off for three 1-pole (QO, QOB)	QO3HT
Handle tie for two 10-30 A single pole QO(B) circuit breaker	QOHT2
Handle tie for three 10-30 A single pole QO(B) circuit breaker	QOHT3
Handle Padlock Attachment for Padlocking in OFF position	
For padlocking 1P QO circuit breaker in OFF position only, fixed attachment	Q01PAF
For padlocking 2P and 3P QO circuit breaker in OFF position only, fixed attachment	QO2PAF
For padlocking 1P QO-GFI, QO-AFI, QO-CAFI, and QO-EPD circuit breakers in OFF position only, fixed attachment	QOGFI1PAF
For padlocking 2P QO-GFI and QO-EPD circuit breakers in OFF position only, fixed attachment	QOGFI2PAF
Neutral or Ground Lugs (Lug sizes shown are AWG)	
\#10 to \#2 Al or \#14 to \#4 Cu	Q070AN
\#14 to 2/0 Al or Cu	NQ100AN
\#1 to \#4/0 Al or Cu	Q1150AN
(2) \#4 AWG to 300 kcmil Al or Cu	NQ200AN
Endwalls for MH Enclosures	
Blank (one per package)	MHBE20
With Knockouts (one per package)	MHKE20
NF NQ Rectangular Cutout Endwall Kit for 20 in. wide NEMA 1 Encl.	MHCO20
Blank 26 in. wide (one per package)	MHBE26
Replacement Part Kits	
NQ \& NF Tackle Box Spare Parts Kit	TBPANEL
Other Accessories	
Filler plates (15 per package)	NQFP15

Table 9.44: NQ SurgeLogic SurgeLoc Plug-on SPD [126][127]

Voltage	Surge Current Rating	Part Number
120 / 240 V	80 kA	SSP01SBA08D
	100 kA	SSP01SBA10D
	120 kA	SSP01SBA12D
	160 kA	SSP01SBA16D
	200 kA	SSP01SBA20D
	240 kA	SSP01SBA24D
$208 \mathrm{Y} / 120 \mathrm{~V}$	80 kA	SSP02SBA08D
	100 kA	SSP02SBA10D
	120 kA	SSP02SBA12D
	160 kA	SSP02SBA16D
	200 kA	SSP02SBA20D
	240 kA	SSP02SBA24D
$\begin{gathered} \hline 240 / 120 \text { Vac } \\ \text { High Leg Delta } \\ \hline \end{gathered}$	240 kA	SSP03SBA24D

Fingersafe IP2X per IEC 60529 Barriers for NQ Panelboards
www.se.com/us

Factory-installed IP2X barriers for NQ Panelboards reduce the risk of accidental contact with energized components if a cover is removed.

Features

- Plastic barriers cover Mains (lugs or circuit breaker), copper bus, and branch circuit breakers
- IP2X per IEC 60529 on all ungrounded parts
- 240 Vac maximum
- Three phase (Wye and Delta)

NEMA 1, 2, 3R, 4/4X, 5, or 12 (up to 225 A)

- NEMA 1 panelboards up to 400 A
- Branch circuits up to 100 A: 1-, 2-, and 3-pole
- Selectively coordinated up to 30k AIC
- Available with main lugs, or PowerPacT Q-, H-, J-frame, and LA/LH main circuit breakers
- Series rated up to 200 kAIC with integral main circuit breaker-fully rated up to 65 kAIC
- Sub feed lugs up to 225 A
- cULus Listed to UL 67 and CSA C22.2, No. 29

New Enhanced IP2X design meets IEC 60529[128] with or without a branch circuit breaker installed.

- Unique jaw kit allows QOB branch circuit breakers to plug onto NQ interior with IP2X barriers
Two factory-assembled constructions (refer to Data Bulletin 1640BR1701 for additional information):

Standard IP2X per IEC 60529
(Bus Finger Covers Empty Spaces)

(1) Main Lug CoverMain Breaker Line Side Cover
(3) Main Breaker Load Side Cover
(4) Neutral Cover
(5) Low Amp QO(B) Cover
6) High Amp QO(B) Cover
(7) Bus Finger Cover

Specifications

NQ Fingersafe Bus Ratings, Enclosures, and Circuit Counts								
IP2X Design	Mains rating	Enclosures: NEMA types	Circuit Count					
			18	30	42	54	72	84
Standard	100	$\begin{gathered} 1,2,3 R, \\ 4 / 4 X, 5,12 \end{gathered}$	X	X	-	-	-	-
	225		-	X	X	X	X	X
	400	1	-	X	X	-	X	X
Enhanced	225	$\begin{gathered} 1,2,3 R \\ 4 / 4 X, 5,12 \end{gathered}$	-	-	X	-	-	-
	400	1	-	-	X	-	-	-

QO(B) Branch Circuit Breaker Ratings[129]				
Branch Circuit Breaker	Amperes	1-Pole	2-Pole	3-Pole
QO / QOB	10-60	L	L	L
	70	L	L	H
	80-100	-	H	H
QO-H / QOB-H	15-30	-	L	-
	40-100	-	H	-
QO-HID / QOB-HID	15-30	L	L	L
	40-50	L	L	-
QO-HM / QOB-HM	15-20	L	-	-
QO- VH / QOB-VH	15-30	-	L	L
	15-70	L	-	-
	40-100	-	H	H
QOH[130]	40-100	-	H	-
QHB[130]	15-30	L	L	-
$\begin{gathered} \text { IP2X QO(B) Lug } \\ \text { Covers: } \end{gathered}$	$\begin{aligned} & \hline \text { L (Low Amp) - QOFSLALB } \\ & \text { H (High Amp) - QOFSHALB } \end{aligned}$			

Panelboards intended for use as service equipment, require a barrier over live field connected load terminals. Please select the appropriate barrier from the table below, based upon the main circuit breaker.

Table 9.45: Line Side Barrier and Neutral Bonding Strap Kits
Catalog
Number

Selection Procedure for NF Merchandised Panelboards

1. Review maximum electrical system voltage, ampacity, and available fault current, and determine the type of panelboard is desired (see NF and I-Line ${ }^{\text {TM }}$ Panelboards, page 9-5).
2. Identify total quantity of branch circuit breaker poles and panel spaces required (see Digest sections 7 and 9 for catalog numbers).
3. Select proper main lug interior from NF Main Lug Interiors, page 9-28 or:

- Select main circuit breaker interior and main circuit breaker adapter kit from NF Main Circuit Breaker Interiors - 600Y/347 Vac Max., page 9-29 based upon the equivalent number of poles and ampere rating. NOTE: Interiors include solid neutral and are field convertible to top-feed.
- If a main circuit breaker interior was selected, select a vertical main circuit breaker (or fuse) from PowerPacT H-, J-, L-, or LA/LH frame circuit breakers pages in Section 7 or a back-fed E-frame circuit breaker from Section 9 of the Digest.

4. Select ground bars from tables Table 9.80 and any non-standard neutral assembly (i.e., 200\% neutral for non-linear loads) from Table 9.74.

- Please note that an aluminum ground bar kit is included with NF Panelboard Interiors.

5. Select any required sub-feed circuit breakers, sub-feed lugs (SFL), or feed-through lugs (FTL) kits:

- Subfeed circuit breaker (SFB), sub-feed lugs (SFL) or feed-through lugs (FTL) kits: Table 9.75 in the NF Accessories sections.
- For subfeed circuit breakers, select PowerPacT H-, J-, L- frame circuit breaker from Section 7 of the Digest.

6. Determine the total enclosure height required by adding requirements from interior, main circuit breaker, neutrals, SFL, FTL, or sub-feed circuit breaker.
7. Select enclosure from the tables, Table 9.76, and Table 9.77.

NEMA Type 1-select box and front (cover) catalog number corresponding to interior catalog number.
NEMA Type 3R, 5, 12—select enclosure. Cover for Type 3R, 5, 12 is included with the enclosure.
8. Select the branch circuit breakers to be installed in the panel. For NF panelboards, use E-frame circuit breakers from E-frame Thermal-magnetic (480Y/277 Vac Max) Maximum allowable branch breaker pair combination = 170 A. 100 A Maximum at 600Y/347 Vac, page 9-30.
9. Select options and accessories from tables Table 9.74-Table 9.80. NOTE: Additional NF and NQ options may be found in the Supplemental Digest, Section 4.

NF Merchandised Selection Example

480Y/277 Vac, 304W, 25 kA SCCR, fully rated, copper bus, 100 A , main circuit breaker, Type 1, flush-mount, bolt-on, branch circuit breakers

NF Main Lug Interiors - 600Y/347 Vac Max
Table 9.46: NF Main Lug Interiors - Use I-Line Panelboard for 3ø3W Delta applications above 240 Vac

Circuit Breaker Pole Spaces [1] [2]	Mains Rating (Amps)	Interior Only Catalog Number (Order Branch Circuit Breakers Separately)[1][3]	NEMA 1 Enclosure			Water, Dirt, and Dust Resistant Enclosure Catalog Numbers[4]		
			Box 20 in. W x 5.75 in. D [5][6]	Mono-Flat Trim ${ }^{\text {™ }}$ Front [7]	Hinged Front[5]	Type 3R/5/12 20 in. W x 5.75 in. D [8]	Vented Type 3R 26 in. W x 8.75 in. D [9]	Height (In.)
(Single Phase 3-Wire: Factory Assembled Only) Three Phase 4-Wire [10]								
18	125	$\begin{gathered} \text { NF418L1 } \\ \hline \text { NF418L1C } \end{gathered}$	MH26, MH26BE	NC26()	NC26()HR	MH26WP	-	26
30		$\frac{\text { NF430L1 }}{\text { NF430L1C }}$	MH32, MH32BE	NC32()	NC32()HR	MH32WP	-	32
42		NF442L1C	MH38, MH38BE	NC38()	NC38()HR	MH38WP	-	38
54		NF454L1C	MH44, MH44BE	NC44()	NC44()HR	MH44WP		44
30	250	NF430L2	MH38, MH38BE	NC38()	NC38()HR	MH38WP	-	38
42		NF442L2	MH44, MH44BE	NC44()	NC44()HR	MH44WP	-	44
54		NF454L2	MH50, MH50BE	NC50()	NC50()HR	MH50WP	-	50
66		NF466L2	MH62, MH62BE	NC62()	NC62()HR	MH62WP	-	62
30	400	NF430L4	MH50, MH50BE	NC50V()	NC50V()HR	MH50WP	MH62D9VWP[11]	50/62
42		NF442L4	MH56, MH56BE	NC56V()	NC56V()HR	MH56WP	MH68D9VWP[11]	56/68
54		NF454L4	MH62, MH62BE	NC62V()	NC62V()HR	MH62WP	MH74D9VWP[11]	62/74
66		NF466L4	MH74, MH74BE	NC74V()	NC74V()HR	MH74WP	MH86D9VWP[11]	74/86
84		NF484L4	MH86, MH86BE	NC86V()	NC86V()HR	MH86WP	-	86
30	600	NF430L6C	MH50, MH50BE	NC50V()	NC50V()HR	MH62WP[11]	MH62D9VWP[11]	50/62
42		NF442L6C	MH56, MH56BE	NC56V()	NC56V()HR	MH68WP[11]	MH68D9VWP[11]	56/68
54		NF454L6C	MH62, MH62BE	NC62V()	NC62V()HR	MH74WP[11]	MH74D9VWP[11]	62/74
66		NF466L6C	MH74, MH74BE	NC74V()	NC74V()HR	MH86WP[11]	MH86D9VWP[11]	74/86
84		NF484L6C	MH86, MH86BE	NC86V()	NC86V()HR	-	-	86
	800		Factory Assembled Only[12]					

Note: All NF Merchandised Panelboard interiors include the following: a NFFP15 bag of blank filler plates; a neutral bonding strap; an NF information manual; a NEMA instruction booklet; and a sheet of circuit numbers.

[^1]NF Main Circuit Breaker Interiors - 600Y/347 Vac Max.
Table 9.47: NF Main Circuit Breaker Interiors - Use I-Line Panelboard for 3Ø3W Delta applications above 240 Vac

Circuit Breaker Pole Spaces [13]	Mains Rating (Amps)	Main Circuit Breaker Adapter Kits Less Circuit Breaker)			Interior Only Catalog Number (Order Branch Circuit Breakers Separately) [13][14]	NEMA 1 Enclosure			Water, Dirt, and Dust Resistant Enclosure Catalog Numbers[15]		
		Main Breaker Kit	UL Service Entrance Barrier Kit [16]	Main Circuit Breaker Frame Size[17]		$\begin{gathered} \text { Box } \\ 20 \mathrm{in} . \mathrm{Wx} \\ 5.75 \mathrm{in} . \mathrm{D} / 18] \\ \text { or } 8.75 \mathrm{in.} \mathrm{D} \\ {[19][20 \mathrm{j}} \end{gathered}$	Mono-Flat ${ }^{\text {T" }}$ Front [21]	Hinged Front[21]	$\begin{aligned} & \text { Type } 3 \mathrm{R} / 5 / 12 \\ & 20 \mathrm{in} . W \mathrm{x} \\ & 5.75 \mathrm{in} . \mathrm{D}[22] \end{aligned}$	$\begin{aligned} & \text { Vented Type 3R } \\ & 26 \mathrm{in} . W \times 8.75 \\ & \text { in. D[23] } \end{aligned}$	Height (In.)
(Single Phase 3-Wire: Factory Assembled Only) Three Phase 4-Wire [24]											
15[25]	15-125	$\begin{gathered} \text { Back-fed } \\ \text { Main } \\ \text { Breaker } \\ {[26]} \end{gathered}$	NFEDBS	$\begin{aligned} & \text { EDB, EGB } \\ & \text { or EJBB } \end{aligned}$	$\begin{gathered} \hline \text { NF418L1 } \\ \hline \text { NF418L1C } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{MH} 26, \\ \mathrm{MH} 26 \mathrm{BE} \\ \hline \end{gathered}$	NC26()	NC26()HR	MH26WP	-	26
27[25]					$\begin{gathered} \hline \text { NF430L1 } \\ \hline \text { NF430L1C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH32, } \\ \text { MH32BE } \end{gathered}$	NC32()	NC32()HR	MH32WP	-	32
18	15-125	$\underset{[17]}{\mathrm{N} 150 \mathrm{MH}}$	NFHJLLC	$\begin{gathered} \text { HD/HG/HJ/ } \\ \mathrm{HL} / \mathrm{HR} \end{gathered}$	$\begin{gathered} \hline \text { NF418L1 } \\ \hline \text { NF418L1C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH38, } \\ \text { MH38BE } \\ \hline \end{gathered}$	NC38()	NC38()HR	MH38WP	-	38
30					NF430L1	$\begin{gathered} \text { MH44, } \\ \text { MH44BE } \\ \hline \end{gathered}$	NC44()	NC44()HR	MH44WP	-	44
42					NF442L1C	$\begin{gathered} \text { MH50, } \\ \text { MH50BE } \\ \hline \end{gathered}$	NC50()	NC50()HR	MH50WP	-	50
54[27]					NF454L1C	$\begin{gathered} \text { MH56, } \\ \text { MH56BE } \\ \hline \end{gathered}$	NC56()	NC56()HR	MH56WP	-	56
30	125-250	$\underset{[17]}{\mathrm{N} 250 \mathrm{MJ}}$		JD/JG/JJ/ JLIJR	$\begin{gathered} \hline \text { NF430L2 } \\ \text { NF430L2C } \\ \hline \end{gathered}$	$\begin{aligned} & \text { MH50, } \\ & \text { MH50BE } \end{aligned}$	NC50()	NC50()HR	MH50WP	-	50
42					$\begin{gathered} \text { NF442L2 } \\ \hline \text { NF442L2C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH56, } \\ \text { MH56BE } \\ \hline \end{gathered}$	NC56()	NC56()HR	MH56WP	-	56
54					$\begin{gathered} \hline \text { NF454L2 } \\ \hline \text { NF454L2C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH62, } \\ \text { MH62BE } \\ \hline \end{gathered}$	NC62()	NC62()HR	MH62WP	-	56
66					$\begin{gathered} \hline \text { NF466L2 } \\ \hline \text { NF466L2C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH74, } \\ \text { MH74BE } \\ \hline \end{gathered}$	NC74()	NC74()HR	MH74WP	-	74
30	125-400	N400M[17]	NFLALLC	LA/LH[28]	$\begin{gathered} \hline \text { NF430L4 } \\ \hline \text { NF430L4C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH62, } \\ \text { MH62BE } \\ \hline \end{gathered}$	NC62V()	NC62V()HR	MH62WP	MH62D9VWP	62
42					$\begin{gathered} \hline \text { NF442L4 } \\ \hline \text { NF442L4C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH68, } \\ \text { MH68BE } \\ \hline \end{gathered}$	NC68V()	NC68V()HR	MH68WP	MH68D9VWP	68
54					$\begin{gathered} \text { NF454L4 } \\ \hline \text { NF454L4C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH74, } \\ \text { MH74BE } \\ \hline \end{gathered}$	NC74V()	NC74V()HR	MH74WP	MH74D9VWP	74
66					$\begin{gathered} \hline \text { NF466L4 } \\ \hline \text { NF466L4C } \\ \hline \end{gathered}$	$\begin{gathered} \text { MH86, } \\ \text { MH86BE } \end{gathered}$	NC86V()	NC86V()HR	MH86WP	MH86D9VWP	86
30	125-600	$\underset{[17]}{\mathrm{N} 600 \mathrm{MPPL}}$	NFPPLLLC	$\underset{\mathrm{LR}}{\mathrm{LG} / \mathrm{LL} /}$	NF430L6C	MH68D9	$\begin{gathered} \hline \mathrm{NC68V}() 3 \mathrm{PNF} \\ {[29]} \\ \hline \end{gathered}$	NC68V()3PNFHR[29]	-	Factory Assembled Only	68
42					NF442L6C	MH74D9	$\begin{gathered} \hline \mathrm{NC74V(}) 3 \mathrm{PNF} \\ {[29]} \\ \hline \end{gathered}$	NC74V()3PNFHR[29]	-		74
54					NF454L6C	MH80D9	$\begin{gathered} \hline \mathrm{NC} 80 \mathrm{~V}() 3 \mathrm{PNF} \\ {[29]} \\ \hline \end{gathered}$	NC80V()3PNFHR[29]	-		80
	600-800					Factory Assembled Only[30]					

[13] Order EDB, EGB, or EJB branch circuit breakers separately. Maximum allowable branch circuit breaker pair combination is 170 A .
[14] "C" suffix indicates copper bussing.
[15] Wall mounting brackets add 0.4 inches to back of MHxxWP enclosures.
[16] Please select the appropriate Main Circuit Breaker Barrier for UL Service Entrance applications (see U.S. Service Entrance Barrier Kits, page 9-26).
[17] Select the appropriate PowerPacT main circuit breaker from Section 7
[18] Nominal interior dimensions, see PBA600 for details.
[19] D9 suffix indicates the 8.75 in. Deep Enclosure required for panelboards with PowerPacT L main circuit breaker or sub-feed circuit breaker. See PBA604 for dimensional details.
[20] If Blank End Walls are desired at both ends of 5.75 " deep NEMA 1 Enclosure, select catalog number with "BE" suffix. Both end walls are blank in 8.75 " deep enclosures.
[21] Add "F" for flush mount, "S" for surface mount.
[22] Enclosure includes trim kit. NEMA 3R, 5, 12 enclosures must be bottom fed. Nominal interior dimensions, see PBA555 for details.
 circuit breaker with trip current >150 A. Interior nominal dimensions, see PBA603WP for details.
[24] NF panelboards without neutral connections may be applied to 3 phase, 4 wire grounded Wye systems, except at the Service Entrance.
[25] Pole spaces shown are available for branch circuits, with spaces deducted for the back fed main circuit breaker.
[26] Back-fed EDB 125 A 3 pole main circuit breaker must be ordered separately and field installed. Maximum breaker rating opposite is 20 A
[27] Please note that some local building codes limit panelboards to 42 circuits, including those that reference 2005 or earlier version of NFPA 70.
[28] Available for 125 A-400 A applications. Please order short handle circuit breaker (i.e., LAL36400MB).
[29] Three point latch trim front; required for enclosures on panelboards with PowerPacT L Main Circuit Breaker, Switch, or Sub-Feed Circuit Breaker
[30] 800 A interiors with main circuit breaker require 8.75 inch deep, 26 inch wide enclosures.

Refer to NF Panelboards

E-frame Circuit Breakers for NF Merchandised Panelboards
Table 9.48: E-frame Thermal-magnetic (480Y/277 Vac Max)[31][32]

Ampere Rating	$\begin{aligned} & \text { ED, EG, EJ } \\ & \text { (480Y/277 Vac) } \end{aligned}$		$\begin{gathered} \text { "D" Interrupting } \\ \text { Level } \\ 18 \mathrm{kA} @ 480 \mathrm{Y} / \\ 277 \mathrm{Vac} \\ \hline \end{gathered}$	"G" Interrupting Level 35 kA @ 480YI 277 Vac	\qquad Level 65 kA @ 480Y/ 277 Vac	Terminal Wire Range (AWG)
	Hold	Trip	Catalog Number	Catalog Number	Catalog Number	
1-pole, 277 Vac						
15 A	270	875	EDB14015[33][34]	EGB14015[33][34]	EJB14015[33][34]	$\begin{aligned} & \text { AL30FD } \\ & \# 14-\# 6 \\ & \text { Al or } \mathrm{Cu} \end{aligned}$
20 A			EDB14020[33][34]	EGB14020[33][34]	EJB14020[33][34]	
25 A			EDB14025[34]	EGB14025[34]	EJB14025[34]	
30 A			EDB14030[34]	EGB14030[34]	EJB14030[34]	
35 A	630	1800	EDB14035[34]	EGB14035[34]	EJB14035[34]	$\begin{aligned} & \text { AL100FD } \\ & \# 14-2 / 0 \\ & \text { Al or } \mathrm{Cu} \end{aligned}$
40 A			EDB14040[34]	EGB14040[34]	EJB14040[34]	
45 A			EDB14045[34]	EGB14045[34]	EJB14045[34]	
50 A			EDB14050[34]	EGB14050[34]	EJB14050[34]	
60 A			EDB14060	EGB14060	EJB14060	
70 A			EDB14070	EGB14070	EJB14070	
2-pole, 480Y/277 Vac [35]						
15 A	270	875	EDB24015[34]	EGB24015[34]	EJB24015[34]	$\begin{aligned} & \text { AL30FD } \\ & \# 14-\# 6 \\ & \text { Al or } \mathrm{Cu} \end{aligned}$
20 A			EDB24020[34]	EGB24020[34]	EJB24020[34]	
25 A			EDB24025[34]	EGB24025[34]	EJB24025[34]	
30 A			EDB24030[34]	EGB24030[34]	EJB24030[34]	
35 A	630	1800	EDB24035[34]	EGB24035[34]	EJB24035[34]	$\begin{aligned} & \text { AL100FD } \\ & \text { \#14-2/0 } \\ & \text { Al or } \mathrm{Cu} \end{aligned}$
40 A			EDB24040[34]	EGB24040[34]	EJB24040[34]	
45 A			EDB24045[34]	EGB24045[34]	EJB24045[34]	
50 A			EDB24050[34]	EGB24050[34]	EJB24050[34]	
60 A			EDB24060	EGB24060	EJB24060	
70 A			EDB24070	EGB24070	EJB24070	
80 A	1000	2300	EDB24080	EGB24080	EJB24080	$\begin{aligned} & \text { AL100FD } \\ & \text { \#14-2/0 } \\ & \text { Al or } \mathrm{Cu} \end{aligned}$
90 A			EDB24090	EGB24090	EJB24090	
100 A			EDB24100	EGB24100	EJB24100	
110 A			EDB24110	EGB24110	EJB24110	
125 A			EDB24125	EGB24125	EJB24125	
3-pole, 480Y/277 Vac						
15 A	270	875	EDB34015[34]	EGB34015[34]	EJB34015[34]	$\begin{aligned} & \text { AL30FD } \\ & \# 14-\# 6 \\ & \mathrm{Al} \text { or } \mathrm{Cu} \end{aligned}$
20 A			EDB34020[34]	EGB34020[34]	EJB34020[34]	
25 A			EDB34025[34]	EGB34025[34]	EJB34025[34]	
30 A			EDB34030[34]	EGB34030[34]	EJB34030[34]	
35 A	630	1800	EDB34035[34]	EGB34035[34]	EJB34035[34]	$\begin{aligned} & \text { AL100FD } \\ & \text { \#14-2/0 } \\ & \text { Al or } \mathrm{Cu} \end{aligned}$
40 A			EDB34040[34]	EGB34040[34]	EJB34040[34]	
45 A			EDB34045[34]	EGB34045[34]	EJB34045[34]	
50 A			EDB34050[34]	EGB34050[34]	EJB34050[34]	
60 A			EDB34060	EGB34060	EJB34060	
70 A			EDB34070	EGB34070	EJB34070	
80 A	1000	2300	EDB34080	EGB34080	EJB34080	$\begin{aligned} & \text { AL100FD } \\ & \text { \#14-2/0 } \\ & \mathrm{Al} \text { or } \mathrm{Cu} \end{aligned}$
90 A			EDB34090	EGB34090	EJB34090	
100 A			EDB34100	EGB34100	EJB34100	
110 A			EDB34110	EGB34110	EJB34110	
125 A			EDB34125	EGB34125	EJB34125	
EPDs (Equipment Protection Devices), 1-pole, 277 Vac , Thermal-magnetic with 30 mA ground-fault protection[36]						
15 A	270	875	$\begin{gathered} \hline \text { EDB14015EPD[33] } \\ {[34]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { EGB14015EPD[33] } \\ {[34]} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { EJB14015EPD[33] } \\ {[34]} \\ \hline \end{gathered}$	$\begin{gathered} \# 14-\# 6 \mathrm{Cu} \\ \text { or } \\ \# 12-\# 4 \mathrm{Al} \end{gathered}$
20 A			$\begin{gathered} \text { EDB14020EPD[33] } \\ {[34]} \end{gathered}$	$\begin{gathered} \hline \text { EGB14020EPD[33] } \\ {[34]} \end{gathered}$	$\begin{gathered} \hline \text { EJB14020EPD[33] } \\ {[34]} \\ \hline \end{gathered}$	
30 A			EDB14030EPD[34]	EGB14030EPD[34]	EJB14030EPD[34]	
40 A	630	1800	EDB14040EPD[34]	EGB14040EPD[34]	EJB14040EPD[34]	
50 A			EDB14050EPD[34]	EGB14050EPD[34]	EJB14050EPD[34]	

NOTE: All EDB, EGB, and EJB circuit breakers are UL Listed as HACR Type. For $50^{\circ} \mathrm{C}$ calibration, use a CA suffix. NF branch circuit breakers are fungus proof as standard.

Panelboards

Refer to NF Panelboards
Table 9.49: Factory installed Electrical Accessories

Auxiliary Switch (1A/1B)	Alarm Switch (NO)	Coil Burden Max. (VA)	Minimum Recommended Supply Transformer (VA)
		288	50
Monitors circuit breaker contact status and provides a remote signal indicating the circuit breaker contacts are OPEN or CLOSED. Application Max Load=10 A @ 120 Vac $50 / 60 \mathrm{~Hz}$ Terminals for \#14 AWG Cu wire	Used with control circuits and is actuated only when the circuit breaker has tripped. Application Max Load=7 A @ 120 Vac $50 / 60$ Hz Terminals for \#14 AWG Cu wire.	Shunt Trip-Trips the circuit breaker from a remote location by means of a coil energized from a separate circuit. A 120 V shunt trip will operate at 55% or more of rated voltage. Application For use with momentary or maintained push button. $120 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ Terminals for \#14 AWG Cu wire.	

Table 9.50: Factory Installed Electrical Accessory Packages for ED, EG, EJ Circuit Breakers

Accessory Package	Suffix
Auxiliary Switch and Alarm Switch[37][38]	AABA
Shunt Trip Package[37][38]	SA
Auxiliary Switch/Alarm Switch/Shunt Trip Package[37][38]	AABASA
Alarm Switch (N.O.) Package for EPDs only	BA

Table 9.51: Terminal Nut Insert Kit
Table 9.51: Terminal Nut Insert Kit

Circuit Breaker Type	Qty. per Kit	Catalog No.
ED, EG, EJ	3	TIKFD

Table 9.52: Handle Accessories

Circuit Breaker Type		No. of Poles
E-frame Fixed Padlock Attachment, Lock ON/OFF		
ED, EG, EJ	1, 2, or 3	EDPA
E-frame Fixed padlock attachment, Lock OFF only		
ED, EG, EJ	1, 2, or 3	EDPAF
E-frame Removable padlock attachment, Lock OFF only		
ED, EG, EJ	1, 2, or 3	HPAFD
E-frame Handle Ties	Ties 2-1P	ECB2HT
ED, EG, EJ	Ties 3-1P	ECB3HT

Table 9.53: Interrupt Ratings (kA)

	EDB	EGB	EJB
120 V	25	65	100
240 V	$18(1 \mathrm{P}), 25$	$35(1 \mathrm{P}), 65$	$65(1 \mathrm{P}), 100$
$480 \mathrm{Y} / 277 \mathrm{~V}$	18	35	65
$600 \mathrm{Y} / 347 \mathrm{~V}[39]$	14	18	25

Table 9.54: Mechanical Lug Kit Information (Al lugs for use with AI or Cu wire)[38]

Circuit Breaker Application				Number of Wires Per Lug and Wire Range	Catalog Number	Lugs Per Kit
Standard	Ampere Rating	Optional	Ampere Rating			
EDB, EGB,EJB	15-30 A	-	-	one \#12—\#6 AWG Al or one \#14-\#6 AWG Cu	AL30FD	3
	35-125 A	EDB, EGB, EJB	15-30 A [40]	one \#12-2/0 AWG AI or one \#14-2/0 AWG Cu	AL100FD	3
-	-	EDB, EGB, EJB	15-125 A	one \#14-1/0 AWG Cu	CU100FD	3

[37] Accessory package takes an additional pole space.
[38] Not available for EPD.
[39] Requires use of ExBx6xxx circuit breakers, i.e. EDB16015 for a 1P, 15A circuit.
[40] Factory installed only. Use suffix "LH".

Refer to NF Panelboards

Factory Assembled Main Circuit Breakers-600Y/347 Vac maximum
Table 9.55: NF Panelboard Factory Assembled Interiors-600Y/347 Vac Max

Single Phase 3-Wire (1P/3W), or Three Phase 4-Wire (3P/4W) [41]							
Mains Rating (Amps)				Max. Number of One-Pole Circuit Breakers	Bus Material	Min. Box Depth (inches)	
Main Lugs Only	Circuit Breaker Frame	Main Breaker[42]	Main Switch[42]			Main Lugs Only	Main Breaker / Switch
125 Max	ED, EG, EJ[43]	15-125	-	18, 30	Al, Cu	5.75 in.	5.75 in.
125 Max	HD/HG/HJ/HL/HR	15-125	110-125	18, 30, 42, 54[44]	Al, Cu	5.75 in.	5.75 in.
250 Max	JD/JG/JJ/JL/JR	150-250	150-250	30, 42, 54, 66	Al, Cu	5.75 in.	5.75 in.
400 Max	LA/LH	125-400	300-400	30, 42, 54, 66, 84	Al, Cu	5.75 in.	5.75 in .
600 Max	LG/LJ/LL/LR[45]	125-600	450-600	30, 42, 54, 66[46], 84	Cu	5.75 in.	8.75 in.[47]
800 Max	MG	600-800	-	30, 42, 54	Cu	8.75 in.[48]	8.75 in.[49]
	PG, PJ, PL	600-800	600-800				

NOTE: Factory Assembled Main Circuit Breakers (600Y/347 Vac maximum). 600Y/ 347 Vac applications require use of ExBx6xxx branch circuit breakers, i.e. EDB16015 for a 1P, 15A circuit.[50]
400 A and 600 A panelboards, $1 \varnothing$ or $3 \varnothing$
PowerPacT L-frame - see Tables in Section 7.
Table 9.56: Main Circuit Breaker

No. of Poles	Trip Unit Options	Frame Sizes	Ampacity
3	LI, LSI, Switch	LG, LJ, LL, LR	$125-600 \mathrm{~A}$

LA/LH, PowerPacT H and J-frame circuit breakers are also available-see Tables in Section 7 and Supplemental Digest Section 3.

Table 9.57: PowerPacT L Main Circuit Breaker Cabinet Height (inches)

Max. No. of Branch Spaces (Does not include sub-feed circuit breaker spaces)	NEMA 1 Enclosure (20 in. W x 8.75 in. D) [51]	Vented NEMA 3R Enclosure (26 in. W x 8.75 in. D)[52]	
	400 / 600 A Interior	400 A	600 A
30	68	68	74
42	74	74	80
54	80	80	86

Table 9.58: Sub-feed Circuit Breakers for NF Panelboards[53]

Interior Mains Rating	Mains Type	Sub-Feed Circuit Breaker(s)			Space Factor [54]
		Ampacity	Poles	MCCB Frame	
250-800 A	Main Lugs	110-150	2, 3	HD, HG, HJ, HL, HR[55]. [56]	18 inches
		150-250	2, 3	JD, JG, JJ, JL, JR[56]. [57]	
250-400 A	PowerPacT J or LA/ LH Main Circuit Breaker	110-150	2, 3	HD, HG, HJ, HL, HR[55]. [56]	
		150-250	2, 3	JD, JG, JJ, JL, JR[56]. [57]	
		125-600	2, 3	LA or LH[58]	
			3	LG, LJ, LL, LR[59]	
$\begin{gathered} 400-600 \mathrm{~A} \\ {[60] \cdot[61]} \end{gathered}$	PowerPacT L Main Circuit Breaker[62]	110-150	2, 3	HD, HG, HJ, HL, HR[55]. [56]	18 inches
		150-250	2, 3	JD, JG, JJ, JL, JR[56]• [57]	
		125-400	2,3	LA / LH[58]	12 inches
		125-600	3	LG, LJ, LL, LR[60]	18 inches
800 A[63]	Main Circuit Breaker	110-150	2, 3	HD, HG, HJ, HL, HR[55]. [56]	12 inches
		150-250	2,3	JD, JG, JJ, JL, JR[56] [57]	18 inches
		125-400	2, 3	LA / LH	12 inches

[41] NF panelboards without neutral connections may be applied in 3-phase, 4-wire grounded Wye systems, except at the Service Entrance.
[42] Factory Assembled Interiors are rated for trip current of Main Breaker / Switch.
[43] Back-Fed Main Breaker applications only.
[44]
45] PowerPacT L crcuit breakers may only be installed on 600 A NF panelboard interiors. 400 A max. PowerPacT L circuit breakers should be selected for applications requiring trip ampacities between 125-400 A.
[46] NF Panelboards with PowerPacT L Main Circuit Breaker or Switch are limited to a maximum of 54 branch circuits.
[47] NF Panelboards with PowerPacT L Main Circuit Breaker or Switch require 8.75 in . deep enclosures and three point latch trim fronts.
[48] Enclosures limited to NEMA Type 1 only.
[49] 8.75 in. Enclosures limited to 26 in. Wide NEMA Type 1.
[50] Requires use of ExBx6xxx branch circuit breakers, i.e. EDB16015 for a 1P, 15A circuit.
[51] D9 8.75 in. deep enclosure and three point latch door is required for PowerPacT L Main Circuit Breaker, Switch, or Sub-Feed Circuit Breaker. See Table 9.47 NF Main Circuit Breaker Interiors - Use I-Line Panelboard for 3Ø3W Delta applications above 240 Vac, page 9-29.
[52] PowerPacT L not available in non-vented (NEMA Type $3 R / 5 / 12$, or $4 / 4 X$) enclosures.
[53] See Digest Section 7 for Interrupting Ratings and Catalog Numbers of PowerPacT H-, J-, L-, and LA/LH frame MCCBs. NEMA 3R applications with sub-feed breakers greater than 150 A require 8.75 in . deep, 26 in . wide enclosure - reference PBA603WP for dimensions.
[54] Space Factor is the length required for sub-feed circuit breaker. Please reference Product Selector output for panelboard enclosure dimensions.
[55] Three pole HD, HG, HR MCCBs are installed for single phase sub-feed circuit breaker applications.
[56] One or two sub-feed circuit breakers may be selected.
[57] Three pole JR MCCBs are installed for single phase sub-feed circuit breaker applications.
58] NF Panelboards with LA / LH sub-feed circuit breakers are shipped fully assembled.
[59] NF Panelboards with PowerPacT L main and sub-feed circuit breakers require 26 in. wide, 8.75 in. deep enclosure with 3-point latch trim front. Reference PBA758 or PBA754 drawings for dimensions in NEMA Type 1 or 3R enclosures, respectively.
[60] NF Panelboards with PowerPacT L circuit breakers require 8.75 in. a deep enclosure with 3-point latch trim front. Reference PBA559x drawings for dimensions, where x may be blank, HR, HRT, or T.
[61] Add 6 in. to space factor for NF Panelboards with 600 A PowerPacT L circuit breakers in NEMA 3R enclosures. Reference PBA754 drawing for dimensions. Maximum sub-feed breaker is 400 A when installed with a 600 A rated main circuit breaker in a NEMA 3R enclosure
[62] NF Panelboards with PowerPacT L main circuit breaker and any sub-feed circuit breaker(s) are shipped completely assembled in 26 in. wide, 8.75 in. deep enclosures, with gutter mounted neutral assemblies.
 dimensions.

Table 9.58 Sub-feed Circuit Breakers for NF Panelboards $[9.58]$ (cont'd.)

Interior Mains Rating	Mains Type	Sub-Feed Circuit Breaker(s)			MCace Factor [64]
		Ampacity	Poles	MCBame	18 inches
		$125-600$	3	LG, LJ, LL, LR	
$400-800 \mathrm{~A}$ $[64]$	Main Circuit Breaker[65]	$110-400$	2,3	One LA / LH with one H-, or J- frame	36 inches

Common Features

Table 9.59: Sub-feed (Double) Lugs (Standard Copper Mechanical Lugs)

Mains Rating	Sub-feed Lug Wire Range
125 A	$(2) \# 6-2 / 0 \mathrm{AWG} \mathrm{AI}$ or Cu
250 A	two $1 / 0 \mathrm{AWG}-350 \mathrm{kcmil}$ or one $1 / 0 \mathrm{AWG}-750 \mathrm{kcmil} \mathrm{Al}$ or Cu
400 A	$(2) 1 / 0 \mathrm{AWG}-750 \mathrm{kcmil} \mathrm{Cu}$
600 A	(4) $4 / 0 \mathrm{AWG}-500 \mathrm{kcmil} \mathrm{Al}$ or Cu
800 A	(6) $3 / 0 \mathrm{AWG}-500 \mathrm{kcmil} \mathrm{Al} \mathrm{or} \mathrm{Cu}$
Sub-feed (Double) Lugs (Standard Aluminum Mechanical Lugs): An additional mains and termination point that can	

be used to feed out to another panelboard or device from the incoming service lines.
Available on main lug interiors only.
Table 9.60: Sub-feed Lug Cabinet Data (Standard Aluminum Mechanical Lugs)

Max. No. of Branch Spaces	Main Lugs Enclosure Height in Inches				
	125 A	250 A	400 A	600 A	$800 \mathrm{~A}[66]$
18	26	-	-	-	-
30	32	38	50	74	80
42	-	44	56	80	86
54	-	50	62	86	92

Table 9.61: Feed-through Lugs (Standard Aluminum Mechanical Lugs)

Mains Rating	Feed-through Wire Range Wire
125 A	one \#6 AWG-2/0 kcmil Al or Cu
250 A	one \#6 AWG-350 kcmil Al or Cu
400 A	one $1 / 0 \mathrm{AWG}-750 \mathrm{kcmil}$ or
600 A	two $1 / 0 \mathrm{AWG}-350 \mathrm{kcmil} \mathrm{Al}$ or Cu

Feed-through Lugs (Standard Aluminum Mechanical Lugs): A second set of lugs assembled at the opposite end from the mains of the panelboard. Often used to connect another panelboard or device to the incoming lines. Available on main lugs and main circuit breaker panelboards.

Table 9.62: Feed-through Lugs Cabinet Data (Standard Aluminum Mechanical Lugs)

Max. No. of Branch Spaces	Enclosure Height in Inches									
	125 A	100/125 A		250 A		400 A LA/LH		600 A		800 A
	Main Breaker (back-fed only)	Main Lugs	Main Breaker [67]	Main Lugs [66]						
18	38	32	44	-	-	-	-	-	-	-
30	44	38	50	50	62	56	68	56	74	56
42	-	-	-	56	68	62	74	62	80	62
54	-	-	-	62	74	68	80	68	86	68

Table 9.63: NF Equipment Ground Bar Kits [68]

Interior Rating	Circuit Count	Aluminum	Copper	Ground Bar Insulator Kit
$125 \mathrm{~A} / 250 \mathrm{~A}$	18	PK12GTA		
	30	PK27GTACU	PKGTAB	
	42,54			
$400 \mathrm{~A} / 600 \mathrm{~A}$	66 and Split Bus			

Table 9.64: Name Plates

Name Plates
Standard white face/black letter laminated bakelite, 1 in a bag assembly

Table 9.65: NF Panelboard Neutral Assembly Options (Standard Width Enclosures)

Interior Mains Rating	Mains Type			Load End Options		100\% Neutrals		200\% Neutrals	
	MLO	MB	SFL	FTL	SFB	Aluminum	Copper	Aluminum	Copper
125 A	Y	Y	Y	Y	N/A	Standard	NFN1CU	NFNL1	Factory Assembled Only
250 A	Y	Y	Y	Y	Y		NFN2CU	NFNL2	
	Y	Y	-	-	-		NFN6CU	NFNL4	
400 A			Y	Y	Y			Factory Assembled Only	
600 A	Y	-	-	-	Y				
		Y	Y	Y	Y	FactoryAssembledOnly	FactoryAssembledOnly		
800 A	Y	Y	Y	Y	Y				

64] Space Factor is the length required for sub-feed circuit breaker. Please reference Product Selector output for panelboard enclosure dimensions.
[64] NF Panelboards with LA / LH sub-feed circuit breakers are shipped fully assembled.
[65] NF Panelboards with PowerPacT L main circuit breaker and any sub-feed circuit breaker(s) are shipped completely assembled in 26 in. wide, 8.75 in. deep enclosures, with gutter mounted neutral assemblies
[66] 800 A main lug panelboards require an 8.75 in . deep and 26 in . wide box.
[67] 600 A main circuit breaker panelboards require an 8.75 in . deep, 26 in . wide box.
68] One (1) PK kit supplied when ground bar is specified. Two (2) PK kits supplied when "extra" ground bar is ordered.

Refer to NF Panelboards
Table 9.66: NF Main Neutral Conductors-(Quantity) and Wire Size[69]

Interior Rating	Mechanical Neutral Line Lugs		Compression Neutral Line Lugs
	Standard	Oversized	Standard
	Lug Wire Range	Lug Wire Range	Lug Wire Range
125 A	(1) \#6-2/0 AWG Cu or AI	Select 250 A neutral assembly	(1) \#6-2/0 AWG Cu or (1) \#4-300 kcmil Al
250 A	(1) \#6 AWG-250 kcmil Cu or (1) \#6 AWG - 350 kcmil	Select 400 A neutral assembly	(1) $2 / 0$ AWG-250 kcmil Cu or (1) 250-350 kcmil Al
400 A	(2) $1 / 0$ AWG- 300 kcmil or (1) 1/0 AWG-700[70] kcmil Cu or AI	(2) $1 / 0$ AWG-700[70] kcmil or (4) 1/0 AWG-300 kcmil	(1) 400-600[70] kcmil Cu or (1) 2/0 AWG-500 kcmil AI
600 A		(4) 1/0 AWG-600[70] kcmil Cu or Al [71]	(1) $2 / 0$ AWG-500 kcmil Cu or Al
600 A		(6) 4/0 AWG-500 kcmil Cu or Al[72]	
800 A		-	

NOTE: 200\% applications require gutter mounted neutral in special (W $\times 26$ in.) enclosure factory assembled only. One exception, without subfeed lugs, feed-thru lugs and subfeed breakers 400 A ($30-84$ circuit interiors) and 600 A ($30-54$ circuit interiors) does not require an special enclosure.
Gutter extensions may be required to provide NEC wire bending space for cable(s) of maximum lug size.
Table 9.67: NF Panelboard Condo Riser Neutral Panelboards (Requires 26 in. Wide, 8.75 in . Deep Enclosure) ${ }^{[73]}$

Mains Rating	Available Branch Circuits	Neutral Rating	Neutral Assembly	Mains Options			Load End Options		Line Lug Wire Range	Load Lug Wire Range
				Main Lugs	Main Breaker	Sub- Feed Lugs	FeedThru Lugs	Sub- Feed Breaker		
$\begin{aligned} & 4001 \\ & 600 \mathrm{~A} \end{aligned}$	30, 42, 54	100\%	NFN6CR	Y[74]	LA, LG, LH, LJ, LL, LR [75]	Y	Y	Y	(4) AWG	(8) AWG 3/0-750 kcmil
		200\%	NFNL6CR						$\begin{gathered} \text { 1/0 }-750 \\ \text { kcmil } \end{gathered}$	
800 A		100\%	Factory Assembled Only	N/A	MG, PG, PJ,PL[76]	Y	Y	Y	(8) AWG	(8) AWG
		200\%							3/0-750 kcmil	$3 / 0-750$ kcmil

Table 9.68: Metal Directory Frame

> Metal Directory Frame

Metal Directory Frames are available as a premium factory assembled alternative to standard plastic directory card holders on the back of panelboard trim fronts.

Table 9.69: Hinged Door-in-Door Trim

Hinged Door-in-Door Trim
Hinged Door-in-Door Trim has piano hinge down one side. Inner door has a lock, outer door is retained with screws
Hinged Door-in-Door with Outer Door Lock in place of screws

Table 9.70: Weatherproof or Dusttight Cabinets NEMA Type 3R, 4, 4X, 5, 12)

NF MB Panelboard in Vented NEMA 3R enclosure

NOTE: NF panelboards with PowerPacT L circuit breakers are not available with a NEMA Type 4, 4X, 5, or 12 enclosure. (Use I-Line).
NF panelboards with PowerPacT L circuit breakers are available with vented 26 in. wide NEMA 3R enclosures. These vented NEMA 3R enclosures also enable selection of subfeed circuit breakers up to 600 A .
400 A NF panelboards in NEMA 4, 4X, 5 , or 12 enclosures are available with one subfeed breaker up to 150 A .

Table 9.71: Optional Factory Assembled Lugs for Main Lug Only and Main Circuit Breaker Interiors

\quad Incoming Lugs Type
Aluminum Compression Lugs
Copper Mechanical Lugs
Copper Compression Lugs

Table 9.72: Surgelogic ${ }^{\text {™ }}$ Hard Bus SPD—Model $[77]$

Surge Current Rating kA
100
120
160
200
240

NF Panelboard Accessories
NF Panelboards-600Y/347 Vac Max.

Table 9.73: Surgelogic SPD Options

Surge Counter	
Dry Contacts	
Remote Monitor	
NOTE: For additional factory modifications, see Modifications For Factory	
Assembled Panelboards, page 9-67.	
AcCesSories	Copper 100\% Neutral Kit
	Catalog No.
Neutral Kit	NFN1CU
NFNL1	NFN2CU
NFNL2	NFN6CU
NFNL4[78]	NFN6CU[78]
Assembled Only	

Table 9.75: NF Merchandised Interior Modification Kits

Mains Ampacity	Sub-feed Lugs [79]	Feed-through Lugs [79]	Mains Ampacity	Sub-feed Circuit Breaker Kits [79] (circuit breaker not Included)	
	Catalog No.	Catalog No.		Single Sub-feed Circuit Breaker	Twin Sub-feed Circuit Breakers
				Catalog No.	Catalog No.
125	NF125SFL	NF125FTL	250	NF250SFBH/NF250SFBJ	-
250	NF250SFL	NF250FTL	400	N600MPPL (400 A Max.)	$\begin{gathered} \text { NF600SFBH } \\ \text { NF600SFBJ[80] } \end{gathered}$
400	NF400SFL [81]	NF400FTL			
600	Factory Assembled Only		600	NF600SFBPPL (600A)[80]	Factory Assembled Only
800			800	Factory	d Only

NOTE: NF250SFBH and NF600SFBH are for use with HDL, HGL, HJL, HLL, and HRL circuit breakers. NF250SFBJ and NF600SFBJ are for use with JDL, JGL, JJL, JLL, and JRL circuit breakers.

Table 9.76: NF Special Features Standard NEMA Type 1 Enclosure Selection Table—Enclosure Catalog Number for Standard Main Mechanical Lugs Only

Feat	Main Lugs Only														
Feature	Sub-feed Lugs					Feed-through Lugs					Sub-feed Circuit Breaker				
Interior Rating	125 A	250 A	400 A	600 A	800 A	125 A	250 A	400 A	600 A	800 A	250 A	400 A	600 A	600 A [82]	800 A
No. of Circuits	NEMA 1 Enclosure Catalog Number					NEMA 1 Enclosure Catalog Number					NEMA 1 Enclosure Catalog Number				
18	MH26	-	-	-	-	MH32	-	-	-	-	-	-	-	-	Factory Assembled Only
30	MH32	MH38	MH50	Factory Assembled Only		MH38	MH50	MH56	Factory Assembled Only		MH56	MH68	MH68	MH62D9	
42	-	MH44	MH56			-	MH56	MH62			MH62	MH74	MH74	MH68D9	
54	-	MH50	MH62			-	MH62	MH68			MH68	MH80	MH86	MH74D9	
66	-	MH62	MH74			-	MH74	MH80			MH80	MH92	MH92	-	
84	-	-	MH86			-	-	-			-	-	-	-	

Table 9.77: Special Features Enclosures Selection Table—Merchandised NF Vertically Mounted Main Breaker Panelboards with Accessories (by Mains Rating)

No. of Circuits	Vertical Main Circuit Breaker (MB) [83]									Back-fed MB
	Sub-feed Circuit Breaker (PowerPacT H or J)					Feed-through Lugs (FTL)				FTL
	125 A	250 A	400 A	600 A	800 A	125 A	250 A	400 A [83]	600 A	125 A
	Cat. No.									
18	-	-	-	-	-	MH44	-	-	-	MH32
30	-	MH68	MH80	Factory Assembled Only	Factory Assembled Only	MH50	MH62	MH68	Factory Assembled Only	MH38
42	-	MH74	MH86			-	MH68	MH74		-
54	-	MH80	MH92			-	MH74	MH86		-
66	-	MH92	-		-	-	MH86	MH92		-

Table 9.78: Optional Main Lug Kits for Main Lug Panelboards

Ampacity	Al Compression Lug Kit		Cu Mechanical Lug Kit		Cu Compression Lug Kit [81]	
	Catalog No.	Lug Wire Range	Catalog No.	Lug Wire Range	Catalog No.	Lug Wire Range
125	NFALV1 [84]	one \#4 AWG-300 kcmil	NFCUM1	\#6-2/0 AWG	NFCUV1 [85]	one \#6-1/0 AWG
250	NFALV2	one 250-350 kcmil	NFCUM2	\#6 AWG-250 kcmil	NFCUV2 [85]	one 2/0 AWG-300 kcmil
400	NFALV4	two 2/0 AWG-500 kcmil	NFCUM4	one $1 / 0$ AWG- 750 kcmil , or two $1 / 0$ AWG-350 kcmil	NFCUV4	one 400-750 kcmil
600	NFALV6	two 2/0 AWG-500 kcmil	NFCUM6	two 1/0 AWG-750 kcmil	NFCUV6	two 250-500 kcmil
800	Contact your local Schneider Electric representative or distributor.					

[78] Not to be used with SFL, FTL, or SFB. These combinations are factory assembled only.
[79] Available factory assembled only on non-linear panelboards.
[80] Sub-feed circuit breakers may not be field installed onto NF Panelboards with PowerPacT L main circuit breakers
[81] Use copper wire only
[82] PowerPacT LG, LJ, LL, or LR Sub-Feed Circuit Breaker.
[83] 400 A dimension for LA/LH main circuit breakers only.
84] Use of this kit requires an additional 6 in . added to box height
[85] Use of this kit to terminate larger than standard wire size requires an additional 6 in . added to box height
www.se.com/us
Table 9.79: US Service Entrance Barrier Kits (required by NFPA 70—National Electrical Code® (NEC®) 2017 and later)

Catalog Number	Main Circuit Breaker Frame(s)	Panelboard Range	Main Breaker Barrier(s)	Neutral Bonding Strap	Description
NFEDBS	E-frame	NF			NF E-frame Main Circuit Breaker Line Lug Cover and Neutral Bonding Strap
NFHJLLC	PowerPacT H, J	NF	Nom		NF H/J-frame Main Circuit Breaker Line Lug Cover and Neutral Bonding Strap
NFLALLC	$\begin{gathered} \text { Legacy LA/ } \\ \text { LH } \end{gathered}$	NF	Non mish		NF Legacy LA/LHframe Main Circuit Breaker Line Lug Cover and Neutral Bonding Strap
$\underset{\mathrm{C}}{\text { NFPPLL- }}$	PowerPacT	NF			NF PowerPacT L Line Lug Cover and Neutral Bonding Strap
NFPPPLLC	PowerPacT P	NF			NF PowerPacT P Line Lug Cover and Neutral Bonding Strap

Table 9.80: NF Accessories

Description	Catalog No.	Description	Catalog No.
Aluminum Equipment Ground Bar	PK27GTA	Replacement Part Kits	
Copper Equipment Ground Bar	PK27GTACU	Filler plate (15 per package)	NFFP15
AWG \#1-4/0 Aluminum Lug on Aluminum Equipment Ground Bar	PK23GTAL	E-frame Fixed padlock attachment, Lock ON/OFF for ED, EG, and EJ Circuit Breakers 1, 2, or 3 poles	EDPA
Equipment Ground Bar Insulator Kit	PKGTAB	E-frame Fixed padlock attachment, Lock OFF only for ED, EG, and EJ Circuit Breakers 1, 2, or 3 poles	EDPAF
Circuit I.D. number strips		Drip Hood for 20 in. wide enclosures	MHT2DH20

102 odd/even (left side numbered 1, 3, 5...101)	NF102OE	
$103-204$ odd/even (left side numbered 103, 105, 107...203)	NF204OE	
$1-102$ sequential (left side numbered 1, 2, 3 ...102)	NF102S	
$103-204$ sequential (left side numbered 103, 104, 105... 204)	NF204S	
Rail and Deadfront Extensions	NF6RDE	
6 in. Extension	NF12RDE	
12 in. Extension	NF18RDE	
18 in. Extension		

Table 9.81: Add-On Lugs for Neutral Bars or Ground Bars[86]

Catalog Number	Lug Wire Range (AWG)	Wire Ampere
QO70AN	$\# 12$ to \#2 Al or \#14 to \#4 Cu	70 A
Q1100AN	$\# 14$ to \#1/0 Al or Cu	$80-100 \mathrm{~A}$

Square D Separated Distribution and Split Bus Panelboards provide compact, affordable options to protect lighting, HVAC, renewable energy, and appliance circuits in buildings.
Separated Distribution Panelboards facilitate Separation of Electrical Circuits for Electrical Energy Monitoring to simplify compliance with Section 130.5-B of California's 2016 Building Energy Efficiency Standards.
NOTE: Refer to Data Bulletin 1600HO1701 for more information.

Special lug pad adaptors allow field removal of cables, for easy field installation of solid core or split CTs for electrical energy measurement, by load type.

Split Bus panelboards enable configurations of two or three back fed main circuit breakers, with independent branch distribution sections, in a single enclosure.

Separated Distribution and Split Bus Panelboards

Table 9.82: Separated Distribution Interiors (Cabled Between Sections)

Separated DistributionInteriors(cabled between sections)			Max. No. of Available Pole Spaces			Box Height (in.)	
$\begin{aligned} & \text { Prod- } \\ & \text { uct } \\ & \text { Family } \end{aligned}$	Main AmpMLO	Voltage Phases	Main	Split	$\underset{2}{\text { Split }^{2}}$	$\begin{aligned} & \text { Main } \\ & \text { Lug } \\ & \text { Only } \end{aligned}$	Main Circuit Breaker
NQ	225 A	3 Ph	30	18	18	62	74
			18	18	18	62	74
	400 A		30	18	18	80	92
			18	18	18	80	92
NF	250 A	3 Ph	30	18	18	80	92
			18	18	18	74	86

Table 9.83: Bus Bar Interiors

(125 A Max. Split Amps)

Separated Distribution and Split Bus NF and NQ Panelboards

Refer to Panelboards
www.se.com/us
Square D NF and NQ Separated Distribution and Split Bus Panelboards come Factory Assembled with copper bus, with or without an integral Main Circuit Breaker. A wide variety of configurations may be submitted for quotation via Square D QuoteFAST, and may be quoted or ordered by Authorized Distributors using SE Advantage or E-Way Quote Management.

Features:

- Multiple branch section configurations (pole spaces per section):
- Split Bus: 18-30; 30-18; 30-30; 30-18-18
- Separated Distribution: 30-18-18; 18-18-18
- Up to 400 A Mains rating for NQ; up to 250 A Mains in NF panelboards

Notes:

Enclosure width / depth: 20 in. / 5.75 in. minimum.
Subfeed breaker or lugs, feed through lugs not available at top or bottom ends of panel.

- Split Bus - feeder breaker (125 A max.) in downstream split section back-fed from feeder breaker in upstream main or split section.
- Segregated Distribution - cables may be removed in the field. Downstream Split section may have same rating as Main.
(60 A Max. Branch Circuit Breaker) NQ Application Data
Application: For use on ac only. Meet Federal Specification W-P-115c, Type 1, Class 1. UL Listed.
Service: $103 \mathrm{~W}, 3 \varnothing 3 \mathrm{~W}, 3 \varnothing 4 \mathrm{~W}$,
3 Grd. "B" Ø-240 Vac max.
AIR: See the QOB(VH) circuit breaker tables in Section 9.
Mains: Type NQ—Bolt-on main lugs: 100 A, 225 A
- Main circuit breaker: 100 A—QOU, 225 A—QB
- See the tables in Section 7 for main circuit breaker interrupt ratings. See catalog for terminal lug data.
- Main circuit breakers with higher interrupt ratings are available as factory assembled panelboards.
Branches: Bolt-on QOB, 60 A maximum. QOB 10-60 A 1-, 2- and 3-pole. See QOB Circuit Breakers for NQ Panelboards, page 9-15 and NQ Factory Assembled Panelboards, page 9-18 for branch circuit breaker terminal data. QOB-VH and QHB branch circuit breakers are also available as factory assembled.
Cabinet: Front—Screw cover. Box—galvanized steel with removable endwalls.

Gutters:

- 100 A-4 in. min. mains end, 3 in. min. opposite mains
- 225 A-10 in. min. mains end, 5 in . min. opposite mains

Table 9.84: NQ Single-Row (Column-width)—240 Vac Bolt-on [1]

Max. No. of Poles	Mains Rating	Box and Interior with Solid Neutral$(8.625$ in. W. $x 5$ in. D.)(Order branch circuit breakers separately)		Front (Surface Mount)
		Catalog Number	Box Height (In.)	Catalog Number
1 Phase 3-Wire Main Lugs Only				
30	225	NQ830L2C	45	LX45TS
Main Circuit Breaker-2-pole				
20	100	NQ820B1C	40	LX40TS
3 Phase 4-Wire Main Lugs Only				
30	100	NQ8430L1C	40	LX40TS
42	225	NQ8442L2C	58	LX58TS
Main Circuit Breaker-3-pole				
30	100	NQ8430B1C	45	LX45TS
42	225	NQ8442B2C	62	LX62TS

Table 9.85: Cable Troughs and Pull Boxes

Cable Troughs (L=Length) [2]		Pull Boxes with Solid Neutral	
L (n.)	$8.625 \mathrm{in} . \times 5 \mathrm{in}$. Catalog Number	S/N Terminals	Catalog Number
36	MTX836		
48	MTX848	42	MPX81542
56	$M T X 856$		
66	$M T X 866$		

(60 A Max. Branch Circuit Breaker) NF Application Data

Application: For use on ac only. Meet Federal Specification W-P-115c, Type 1, Class 1. UL Listed.
Service: 480Y/277 Vac, 3Ø4W
AIR: See the E-frame circuit breaker tables in Section 9.
Mains: Type NF-Bolt-on main lugs: $125 \mathrm{~A}, 225 \mathrm{~A}$

- Main circuit breaker: 100 A-HD, 225 A-JD. See the tables in Section 7 for main circuit breaker interrupt rating. See the catalog section for terminal lug data.
- Main circuit breakers with higher interrupt ratings are available as factory assembled panelboards.
Branches: EDB, EGB, or EJB, 60 A maximum. See E-frame Thermal-magnetic (480Y/ 277 Vac Max), page 9-30 for branch circuit breaker catalog numbers and terminal data.
Cabinet: Front—Screw cover. Box—galvanized steel with removable endwalls.

Gutters:

- 100 A-4 in. min. mains end, 3 in. min.opposite mains
- 225 A-10 in. min. mains end, 5 in . min. opposite mains

Table 9.86: NF Single-Row (Column-width)-480Y/277 Vac Bolt-on

Max. No. of Poles	Mains Rating	Box and Interior with S/N (9.69 in. W. x 5.625 in. D.)		Front (Surface Mount)
		Catalog Number	Box Height (In.)	Catalog Number
Main Lugs Only-3 Phase 4-Wire				
30	125	NF8430L1C	59	NC59TS
42	225	NF8442L2C	71	NC71TS
Main Circuit Breaker-3-pole				
30	100	NF8430M1C	65	NC65TS
		NF8430M1HDC		
42	225	NF8442M2JDC	85	NC85TS

Table 9.87: Cable Troughs and Pull Boxes

Cable Troughs (L=Length) [3]		Pull Boxes with Solid Neutral	
L $($ In. $)$	9.69 in. $\times 5.625$ in. Catalog Number [4]	S/N Terminals	Catalog Number
36	NTX836		
48	NTX848	42	MPX81542
56	NTX856	NTX866	
66			

Powerlink ${ }^{\text {TM }}$ Intelligent Lighting Control Systems

Powerlink intelligent lighting control systems are ideally suited for controlling lighting and other loads in commercial, institutional, and industrial facilities. Such systems are typically used to lower utility cost by switching branch circuits OFF during non-occupied periods when lighting is unnecessary or during peak demand periods when a partial reduction in load can save significant money.
These systems utilize remotely operated circuit breakers to switch branch circuits ON and OFF via a time schedule or by an externally generated signal (typically a low voltage wall switch, photocell, access system, fire alarm or building management system). All Powerlink components mount inside a standard lighting panelboard to provide a compact, space saving installation.
Powerlink intelligent lighting control systems feature a powerful microprocessor based controller that provides system intelligence for 168 remotely operated branch circuits. Master panelboards contain the control electronics, power supply, and control bus strips for up to 42 branch circuit breakers. Sub-panels extend the capability of the system by allowing remotely operated branch circuit breakers to be operated from the master controller via a simple, 4 -wire, sub-net connection.
Powerlink panels systems have the capability of being networked together and operated from a central workstation or via a remote modem connection. Powerlink software allows users to remotely configure the system, change time schedules, monitor circuit breaker or input status, and override zones and breakers.

BACnet Capability

The Building Automation and Control network (BACnet) communication protocol is incorporated into the Powerlink ${ }^{\top \mathrm{TM}}$ controller design. The addition of the BACnet protocol allows Powerlink panels to be easily integrated into a Building Automation System (BAS) employing this open communication standard without the need for communication bridges or gateways.

Controller

Powerlink NF3500G4 controllers support 'native' BACnet and Ethernet communications.

Refer to Powerlink Intelligent Panelboards
www.se.com/us

Up to eight panels can
be controlled from a
be controlled from a
single controller.

ECB-G3 Circuit Breakers

Factory Assembled System

SE advantage may be used to select 120 Vac, 240 Vac or $480 \mathrm{Y} / 277$ Vac Powerlink intelligent lighting control systems:

- Select system type and interior size from Table 9.88 , page 9-42. All Powerlink panels are furnished with either 1 or 2 control bus strips.
- All Powerlink panels use NF type panelboard interiors, boxes, and trims and are suitable for $120 \mathrm{Vac}, 240 \mathrm{Vac}$ or $480 \mathrm{Y} / 277 \mathrm{Vac}$ systems.
- Select branch circuit breaker requirements. Powerlink panels can accommodate both ECB-G3 remotely operated circuit breakers and EDB, EGB and EJB standard branch circuit breakers.
- Refer to panelboard section for additional panelboard accessories.
- For complete price, order by description.
- Apply appropriate discount schedule.

240 Vac Factory Assembled System Example:
3500 level system with 225 A MLO panelboard rated for 208Y/120 Vac, 304W, 10kAIR, Type 1, surface mount with ground bar and (12) 20 A 1-pole bolt-on remote operated circuit breakers.

Table 9.88:

Item	Page No.
System Type: 3500 controller with 12 ckt bus	page 9-43
Panel type: 250 A MLO	page 9-28
Branch circuit breakers: (12) 20 A 1-pole	page 9-42
Ground bar	page 9-33

Table 9.89:

NF3500G4 Controller Feature	Quantity Available[1]
Inputs	
2 - wire	16
2 - wire with status feedback[2]	8
3 - wire	8
Analog Inputs available	4
Time Scheduler	
Independent schedules	64
ON-OFF periods/schedule	999
Special events/holiday periods	64
Automatic daylight savings	X
Sunrise/sunset tracking	X
Network Variables	
Communications inputs accessible	256
Remote sources (per controller)	128
Maximum subscriptions	256
Zones	
Maximum number	256
Maximum number of sources per zone	4
Maximum number of remotely operated circuit breakers (per subnet)	168
Networking	
RS-232 port/RS-485 port	X
Ethernet (100BaseT port)	X
Protocols	
Modbus ${ }^{\text {TM }}$ ASCII/RTU	X
Modbus TCP	X
BACnet/IP, BACnet MS/TP	X
DMX512	X

Powerlink ${ }^{\text {TM }}$ ECB-G3 Circuit Breakers

Table 9.90: ECB-G3 Circuit Breakers Bolt-On Remotely Operated

Ampere Rating	One-Pole 277 Vac - 14,000 AIR $120 \mathrm{Vac}-65,000$ AIR	Two-Pole 480Y/277 Vac - 14,000 AIR 120/240 Vac - 65,000 AIR 240 Vac - 14,000 AIR Ground B Phase	Three-Pole 480Y/277 Vac - 14,000 AIR 240 Vac - 42,000 AIR
15	ECB14015G3[3]	ECB24015G3[3]	ECB34015G3[3]
20	ECB14020G3[3]	ECB24020G3[3]	ECB34020G3[3]
30	ECB14030G3	ECB24030G3	ECB32030G3[4]

Table 9.91: ECB-G3 Circuit Breakers for Emergency Lighting (requires 2-pole spaces)

Ampere Rating	One-Pole 480 Y/277-14,000 AIR 240 V - 65,000 AIR
20	ECB142020G3EL

NOTE: All are listed as HACR type for use with air conditioning, heating and refrigeration equipment having motor group combinations and marked for use with HACR type circuit breakers. UL listed as HID rated for use with high intensity discharge lighting systems. (1) \#12-8 AI or (1) \#10-8 Cu. Suitable for use with $75^{\circ} \mathrm{C}$ conductors.

[^2]Powerlink ${ }^{\text {TM }}$ Accessories

Table 9.92: Control Bus

Max. No. of Control Circuits	Required Interior Size	Panel Orientation	Catalog No.
12	30	Left	NF12SBLG3
12	30	Right	NF12SBRG3
18	42	Left	NF18SBLG3
18	42	Right	NF18SBRG3
21	54	Left	NF21SBLG3
21	54	Right	NF21SBRG3

Table 9.93: Power Supply

Voltage	Primary Source	Catalog No.
120 V	Panel Bus	NF120PSG3
240 V	Panel Bus	NF240PSG3
277 V	Panel Bus	NF277PSG3
120 V	External	NF120PSG3L
240 V	External	NF240PSG3L
277 V	External	NF277PSG3L

Table 9.94: Cables \& Accessories

Description	Catalog No.
Control bus cables	
Harness standard panel	NF2HG3
Sub-net accessories \& cables	NFSELG3
Sub-panel address selector[5]	NFSN06
6 ' sub-net cable	

Table 9.95: Miscellaneous Hardware

Description	Catalog No.
Circuit Breaker Handle Padlock (Lock On or Off)	HPAFD
Fixed Barrier	NFASBKG3

Table 9.96: Software

Description	Catalog No.
LCSV2 Software[6]	LCSV2

NF3500G4 Controller

Powerlink Software

Remote Mount Controller

- Available on $1 \varnothing$ or $3 \varnothing, 125-800$ A main lugs or $125-600$ A main circuit breaker interiors
- One sub-feed JD, JG, JJ or JL circuit breaker per 250 A panelboard
- Two sub-feed JD, JG, JJ or JL circuit breakers per 400 A panelboard

Remote Mount Controller
Table 9.97: Remote Mount Controller (for externally mounted electronics) Includes NEMA 1 enclosure, NF3500G4 controller, and power supply

Voltage	Catalog No.	Controller Type
120 V	RMC3500G4120	NF3500G4
240 V	RMC3500G4240	
277 V	RMC3500G4277	

NF Panelboards 240 V and 480Y/277 V Factory Assembled Systems—Max. Voltage 480Y/277 Vac

Table 9.98: Branch Circuit Breaker

Powerlink G3-ECB Bolt-On 65 kA AIR@240 Vac, 14 kA AIR@480 Y/277		Standard Breakers-EDB Bolt-On 18 kA AIR 1-pole, 25 kA AIR 2 \& 3-pole @ 240 V, 18 kA AIR@480 Y/277		Standard Breakers HIC -EGB Bolt-On 65 kA AIR@240 Vac, 35 kA AIR@480 Y/277		Standard Breakers Extra HIC-EJB Bolt-On 100 kA AIR@240 Vac, 65 kA AIR@480 Y/277	
Voltage	Ampere Rating						
240	15-20 A	$\begin{gathered} 480 \mathrm{Y} / \\ 277 \\ \text { Vac } \end{gathered}$	15-60 A	$\begin{gathered} 480 \mathrm{Y} / \\ 277 \\ \text { Vac } \end{gathered}$	15-60 A	$\begin{gathered} 480 \mathrm{Y} / \\ 277 \\ \text { Vac } \end{gathered}$	15-60 A
Vac	30 A		70 A		70 A		70 A
$\begin{gathered} 480 \mathrm{Y} / 277 \\ \text { Vac } \end{gathered}$	15-20 A		80-100 A		80-100 A		80-100 A
	30 A		110-125 A		110-125 A		110-125 A
Space Only			Space Only		Space Only		Space Only

NOTE: All EC, ED, EG and EJ branch circuit breakers are UL Listed as HACR type.
Table 9.99: Sub-Feed Breaker Cabinet Data

Max. No. of Branch Spaces (Does not include sub-feed breaker spaces)	Box Height (20 in. W x 5.75 in. D)						
	250 A		400 A LA/LH		600 A		800 A
	Main Lugs	Main Circuit Breaker	Main Lugs	Main Circuit Breaker	$\begin{aligned} & \text { Main } \\ & \text { Lugs[7] } \end{aligned}$	Main Circuit Breaker [8][9]	$\begin{gathered} \text { Main } \\ \text { Lugs[10] } \end{gathered}$
30	56	68	68	80	68	80	68
42	62	74	74	86	74	86	74
54	68	80	80	92	80	92	80

- PowerLogic ${ }^{\text {TM }}$ metering
- Customer equipment space
- Increased box depth
- Box extensions top, bottom and side
- Drip hoods
- Non-standard paint
- NEMA 1 gasketed
- NEMA 4 Stainless steel enclosure
- NEMA 4X Fiberglass enclosure (NQ and NF)
- Stainless steel trim front (NQ, NF and I-LINE)
- Padlockable hasp
- Special locks (Corbin, Yale, Best)
- Equal height boxes
- Common trip to cover two equal height boxes
- Panelboard skirthides conduits feeding a panelboard
- Panelboard wireway for terminating conduit in wireway endwall
- Panelboard interiors and special fronts to fit existing boxes

Powerlink Energy Management (EM) Lighting Control System

Lighting Control System, Relay Panels, and Switches Energy Management (EM) Lighting Control System

The Powerlink Energy Management (EM) Lighting Control System incorporates the same features found in the Powerlink 3500 level system, in addition to integral branch circuit and optional main metering for energy monitoring and verification of the lighting system. Integral metering is accomplished using the PowerLogic ${ }^{\text {™ }}$ Branch Circuit Power Meter (BCPM), which is a highly accurate, full-featured multi-branch circuit power meter that provides unrivalled low-current monitoring.
The Powerlink system reduces electrical energy consumption associated with lighting and other loads by automatically switching loads off during non-occupied periods. The Powerlink system is often ideal for reducing the peak demand by switching unnecessary lights off in response to an automated response signal or when high time-of-day energy tariffs occur.

- Integral individual and optional mains metering to provide utmost flexibility in assurng a sustainable metering and verification program
- Monitors current, voltage, energy consumption, demand, and power factor for complete energy profiling
- Accumulated metering information transmitted via Modbus communications interface
- Data updates occurring within seconds to provide timely preventative maintenance information
- Optional EGX150 web interface for storing and reporting data via standard web browser (suggested for applications without Energy Management System [EMS] software)
- Alarm indication when parameters approach user-configured thresholds
- 16 hard-wired inputs available for connection to devices with physical dry-contacts
- 64 communication inputs available for network connection
- 16 independent time schedules, each can be configured into 24 distinct periods
- 7-day repeating clock with changeable automatic daylight savings time
- Automatic sunrise/sunset tracking with offsets
- 32 special event periods
- 32 remote sources for sharing input status, time schedules, or zone status between controllers
- Full custom logic capabilities, including full Boolean functions and synchronization services
- RS232 and RS485
- Serial communications using Modbus ASCII/RTU, BACnet MS/TP and DMX512 protocols (metering Modbus only)
- Ethernet 100BaseT communications using Modbus TCP and BACnet/IP protocols

Table 9.100: Characteristics, Standards Compliance, and BCPM Specifications
Characteristics
Operating Temperature -5° to $40^{\circ} \mathrm{C}\left(23^{\circ}\right.$ to $\left.104^{\circ} \mathrm{F}\right)(95 \% \mathrm{RH}$, non-condensing)

Storage Temperature	-20° to $85^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.185^{\circ} \mathrm{F}\right)(<95 \% \mathrm{RH}$, non-condensing)

Regulatory/Standards Compliance

- UL Listed 916, Energy Management Equip
- FCC Part 15, Class A
- NEC Class 1 and Class 2 Control Circuits
- ESD Immunity: IEC 1000, level 4
- RF Susceptibility: IEC 1000, level 3
- Electrical Fast Transient Susceptibility: IEC 1000, level 3
- Electrical Surge Susceptibility: IEC 1000, level 4 (power line)
- Electrical Fast Transient Susceptibility: IEC 1000, level 3 (interconnection lines)

BCPM Specifications

General	
Control Power	90-277 Vac
Frequency	$50 / 60 \mathrm{~Hz}$
Sampling Frequency	2560 Hz
Update Rate	1.6 seconds per panelboard
Overload Capability	10 kAIC
Ribbon Cable Support	Up to 20 ft .
Operating Temperature	0° to $60^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{C}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ ($<95 \% \mathrm{RH}$, non-condensing)
Storage Temperature	-40° to $70^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Accurancy	
Current Monitoring	0.25 A to 100A: 3% of reading from 0.25 A to $2 \mathrm{~A} ; 2 \%$ of reading from 2 A to 100 A
Auxiliary Inputs	2% of reading from 1% to 10% of rated current; 1% of reading from 10% to 100% of rated current (0 to 0.333 Vac)
Voltage Input	90-277 Vac; 1\% of reading from 90-277 L-N (models BCPMA and BCPMB only)
Power	4% of reading from 0.25 A to $2 \mathrm{~A} ; 3 \%$ of reading 2 A to $100 \mathrm{~A}[11]$ (models BCPMA and BCPM only)
Network Communications	
Serial	Modbus ${ }^{\text {TM }}$ RTU
Ethernet	TCP/IP

I-Line Combo Panelboard

I-Line Mounting Space	Part Number	Panelboard Ampaci	Single/ Duplex	Lighting Section Type	Lighting Section Amperage	Lighting Section Circuits	$\begin{aligned} & \text { Bus- } \\ & \text { ing } \end{aligned}$	Phase	Ground Bar	Box	4 Piece Trim Without Door	Trim with Door	NEMA 3R/5/ 12 (Includes Front)
18	CP18864N3Q2C	400	S	NQ	225	30	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \end{gathered}$	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ \mathrm{HR} \end{gathered}$	HC2686WP
18	CP18864N3Q2	400	S	NQ	225	30	AI	3	PK32DGTA	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{H R}{\substack{\mathrm{HC} 2686 \mathrm{~T} \\ \mathrm{HR} \\ \hline}}$	HC2686WP
18	CP18864N4Q2C	400	S	NQ	225	42	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} \hline \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{H R}{\substack{\mathrm{HC} 2686 \mathrm{~T}() \\ \hline}}$	HC2686WP
18	CP18864N4Q2	400	S	NQ	225	42	AI	3	PK32DGTA	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \end{gathered}$		HC2686WP
18	CP18864N3F2C	400	S	NF	250	30	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{\mathrm{HR}}{\substack{\mathrm{HC} 2686 \mathrm{~T} \\ \hline \\ \hline}}$	HC2686WP
18	CP18864N3F2	400	S	NF	250	30	AI	3	PK32DGTA	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{H R}{\substack{\mathrm{HC} 2686 \mathrm{~T}() \\ \\ \hline}}$	HC2686WP
18	CP18864N4F2C	400	S	NF	250	42	Cu	3	PK32DGTACU	HC2686DB	$\underset{4 \mathrm{P}}{\mathrm{HC} 2686 \mathrm{~T}()}$	$\underset{H R}{\substack{\mathrm{HC} 2686 \mathrm{~T}() \\ \mathrm{HR}}}$	HC2686WP
18	CP18864N4F2	400	S	NF	250	42	AI	3	PK32DGTA	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{\substack{\mathrm{HC} 2686 \mathrm{~T}() \\ \mathrm{HR}}}{\substack{\text { (} \\ \hline}}$	HC2686WP
18	CP118864N4Q4C	400	S	NQ	400	42	Cu	1	PK32DGTACU	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ \mathrm{HR} \\ \hline \end{gathered}$	HC2686WP
18	CP18866N3Q4C	600	S	NQ	400	30	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} 4 \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{H R}{\substack{\text { HC2686T() } \\ \\ \hline \\ \hline \\ \hline}}$	HC2686WP
18	CP18866N4Q4C	600	S	NQ	400	42	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ \mathrm{HR} \\ \hline \end{gathered}$	HC2686WP
18	CP118866N4Q6C	600	S	NQ	600	42	Cu	1	PK32DGTACU	HC2686DB	$\begin{gathered} \hline \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{H R}{\substack{\mathrm{HC} 2686 \mathrm{~T}() \\ \hline}}$	HC2686WP
18	CP18866N3F4C	600	S	NF	400	30	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \end{gathered}$	$\underset{H R}{\mathrm{HC} 2686 \mathrm{~T}()}$	HC2686WP
18	CP18866N4F4C	600	S	NF	400	42	Cu	3	PK32DGTACU	HC2686DB	$\begin{gathered} \mathrm{HC} 2686 \mathrm{~T}() \\ 4 \mathrm{P} \\ \hline \end{gathered}$	$\underset{H R}{\substack{\mathrm{HC} 2686 \mathrm{~T}() \\ \hline}}$	HC2686WP
22.5	CP23734N3Q2C	400	S	NQ	225	30	Cu	3	PK32DGTACU	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP23734N3Q2	400	S	NQ	225	30	AL	3	PK32DGTA	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP123734N3Q4C	400	S	NQ	400	30	Cu		PK32DGTACU	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP23734N3F2C	400	S	NF	250	30	Cu	3	PK32DGTACU	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP23734N3F2	400	S	NF	250	30	AL	3	PK32DGTA	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP23736N3Q4C	600	S	NQ	400	30	Cu	3	PK32DGTACU	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP23736N3F4C	600	S	NF	400	30	Cu	3	PK32DGTA	HC3273DB9	HCM73T()V	HCM73T()VD	N/A
22.5	CP23914N4Q2C	400	S	NQ	225	42	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N4Q2	400	S	NQ	225	42	Al	3	PK32DGTA	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N5Q2C	400	S	NQ	225	54	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N5Q2	400	S	NQ	225	54	Al	3	PK32DGTA	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N4F2C	400	S	NF	250	42	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N4F2	400	S	NF	250	42	Al	3	PK32DGTA	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N5F2C	400	S	NF	250	54	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23914N5F2	400	S	NF	250	54	Al	3	PK32DGTA	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23916N4Q4C	600	S	NQ	400	42	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23916N5Q4C	600	S	NQ	400	54	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP123916N5Q4C	600	S	NQ	400	54	Cu	1	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23916N4F4C	600	S	NF	400	42	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23916N5F4C	600	S	NF	400	54	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP123916N5Q6C	600	S	NQ	600	54	Cu	1	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23916N44Q4C	600	D	NQ	400	42/42	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP123916N44Q4C	600	D	NQ	400	42/42	Cu	1	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
22.5	CP23916N53Q4C	600	D	NQ	400	54/30	Cu	3	PK32DGTACU	HC3291DB9	HCM91T()V	HCM91T()VD	N/A
31.5	CP32866N44Q4C	600	D	NQ	400	42/42	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32866N53Q4C	600	D	NQ	400	54/30	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32866N4BQ4C	600	D	NQ	400	42/B*	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP132866N44Q6C	600	D	NQ	600	42/42	Cu	1	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32866N44F4C	600	D	NF	400	42/42	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32866N53F4C	600	D	NF	400	54/30	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32866N4BF4C	600	D	NF	400	42/B*	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N44Q6C	800	D	NQ	600	42/42	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP132868N44Q6C	800	D	NQ	600	42/42	Cu	1	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N53Q6C	800	D	NQ	600	54/30	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N3BQ6C	800	D	NQ	600	30/B [1]	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N4BQ6C	800	D	NQ	600	42/B[1]	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP132868N4BQ6C	800	D	NQ	600	42/B[1]	Cu	1	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N5BQ6C	800	D	NQ	600	54/B[1]	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N44F6C	800	D	NF	600	42/42	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N53F6C	800	D	NF	600	54/30	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N3BF6C	800	D	NF	600	30/B[1]	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N4BF6C	800	D	NF	600	42/B[1]	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP
31.5	CP32868N5BF6C	800	D	NF	600	54/B[1]	Cu	3	PK32DGTACU	HC4486DB	HCR86T()	HCR86T()D	HC4486WP

Table 9.102: RTI Cabled Lighting Section Kit for I-Line Combo Panelboard

Part Number	Description	MLO Panelboard Ampacity	Lighting Section Type	Lighting Section Circuits
NFICRT418L1C	NF Lighting Section Kit	125	NF	18 dual
NFICRT442L2C	NF Lighting Section Kit	250	NF	42
NFICRT442L4C	NF Lighting Section Kit	400	NF	42
NFICRT442L6C	NF Lighting Section Kit	600	NF	42
NQICRT418L1C	NQ Lighting Section Kit	100	NQ	18 dual
NQICRT442L2C	NQ Lighting Section Kit	225	NQ	42
NQICRT442L4C	NQ Lighting Section Kit	400	NQ	42
NQICRT442L6C	NQ Lighting Section Kit	600	NQ	42
NQICRT418C1C	Contactor with 18 Circuit NQ Lighting Section Kit	100	NQ	18
NFICRT418C1C	Contactor with 18 Circuit NF Lighting Section Kit	125	NF	18

TYPE HCJ
250 A max. branch circuit breaker
BD, BG, BJ, QB, QD, QG, QJ, HD, HG, HJ, HL, HR, JD, JG, JJ, JL, JR

Box Size:
32 in. Wide, 9.5 in. Deep, NEMA Type 1
TYPE HCP-SU
800 A max. main circuit breaker
BD, BG, BJ, LA, LG, LJ, LL, LH, LR, MG, MJ, PG, PJ, PL, PGC, PJC PLC [2], QB, QD, QG, QJ, HD, HG, HJ, HL, JD, JG, JJ, JL

Box Size:
26 in. Wide, 9.5 in. Deep, NEMA Type 1

I-Line Panelboard
Table 9.103: Interiors, Boxes and Fronts

Total Circuit Breaker Mounting Space (In.)	Mains Ampere Rating	Interior Assembly (Less Branch Circuit Breakers)	Front [3]		Box [4]		Box Height (In.)							
			4 Piece Trim Without Door	Trim With Door[4]	Type 1	NEMA 3R/5/12 [5] (Includes Front)								
		Catalog Number												
HCJ Main Lugs Only 3-pole-Suitable for use as service equipment when provided with a main circuit breaker and service barrier kit. [6]														
27	400 A	HCJ14484	HCM48T()	HCM48T()D	HC3248DB9	HCJ3248WP	48							
		HCJ14484CU												
	600 A	HCJ14486												
		HCJ14486CU												
	800 A	HCJ14488												
45	400 A	HCJ23734	HCM73T()	HCM73T()D	HC3273DB9	HCJ3273WP	73							
	600 A	HCJ23736												
	800 A	HCJ23738												
63	400 A	HCJ32734												
		HCJ32734CU												
	600 A	HCJ32736												
		HCJ32736CU												
	800 A	HCJ32738												
99	400 A	HCJ50914	HCM91T()	HCM91T()D	HC3291DB9	HCJ3291WP	91							
	600 A	HCJ50916												
	800 A	HCJ50918												
HCJ Main Circuit Breaker [7] [8] Includes 3-pole, vertically mounted main circuit breaker-Suitable for use as service equipment with service barrier kit.[6]														
27	400 A	HCJ14734M	HCM73T()	HCM73T()D	HC3273DB9	HCJ3273WP	73							
36	600 A	HCJ18736MP												
	800 A	HCJ18738MP												
45	400 A	HCJ23734M												
72	600 A	HCJ36916MP	HCM91T()	HCM91T()D	HC3291DB9	HCJ3291WP	91							
81	400 A	HCJ41914MCU												
		HCJ41914M												
	800 A	HCJ36918MP												
HCP-SU [9] Universal Single Row Main Lugs or Main Circuit Breaker [8] 3-pole-Suitable for use as service equipment when provided with a main circuit breaker and service barrier kit. [6] For main circuit breaker panel, order plug-on l-Line type PG, PJ, PL, MG, or MJ circuit breakers from page 9-60 through page 9-62 and backfeed as the main breaker (order solid neutral from page 9-50).														
54	800	HCP54868SU	HC2686T()4P	$\begin{gathered} \text { HC2686T() } \\ \text { HR[10] } \end{gathered}$	HC2686DB	HC2886WP	86	100\% rating.						

[3] Add "F" for flush mount, " S " for surface mount.
[4] For Type 1 applications, order interior, front, and box. For Type 3R/5/12 applications, order interior and box only. The front is included with the box.
[5] Remove drain screws for Type 3R rating.
Suitable for use as service equipment if equipped with an integral main circuit breaker or when not more than six main disconnecting means are provided and the panelboard is not used as a lighting and appliance branch circuit panelboard. (Not applicable in Canada)
[7] Bottom feed standard.
[8] Circuit breaker interrupt ratings, see Interrupting Ratings Codes (kA), page 9-57.
[9] For main lugs panel, order sub-feed lug kit and back-feed as main lugs.

TYPE HCP
800 A max. branch circuit breaker BD, BG, BJ, QB, QD, QG, QJ, HD, HG, HJ, HL, HR, JD[11], JG, JJ, [12]

Box Size:
42 in. Wide, 9.5 in. Deep, NEMA Type 1
TYPE HCR-U Universal Mains
1200 A max. branch circuit breaker
BD, BG, BJ, QB, QD, QG, QJ, HD, HG, HJ, HL, HR, JD[13], JG, JJ, JL, JR, LA, LH, LG, LJ, LL, LR, MG, MJ, PG, PJ, PK, PL, RG, RJ, RK, RL, PGC, PJC, PKC, PLC, RGC, RJC, RKC, RLC[14][12]

Table 9.104: (1200 A Interiors Include solid neutral, all others without solid neutral) [15]

Total Circuit Breaker Mtg. Space (In.)	Mains Amp. Rating	Max. No. of MJ, PL, RL Circuit Breakers	Interior Assembly (Less Branch Circuit Breakers)	Front [16]		Box [17]	Box Height (In.)
				4 Piece Trim Without Door [18]	Trim With Door		
			Catalog Number	Catalog Number	Catalog Number	Catalog Number	

27	400	1PL	HCP14504	HCW50T()	HCW50T()D	$\begin{gathered} \text { HC4250- } \\ \text { DB } \end{gathered}$	50
	600		HCP14506				
	800		HCP14508				
	1200		HCP145012N				
45	400	2PL	HCP23594	HCW59T()	HCW59T()D	$\begin{gathered} \text { HC4259- } \\ \text { DB } \end{gathered}$	59
	600		HCP23596				
	800		HCP23598				
	1200		HCP235912N				
63	400	3PL	HCP32684	HCW68T()	HCW68T()D	$\begin{gathered} \text { HC4268- } \\ \text { DB } \end{gathered}$	68
	600		HCP32686				
	800		HCP32688				
	1200		HCP326812N				
99	400	5PL	HCP50864	HCW86T()	HCW86T()D	$\begin{gathered} \text { HC4286- } \\ \text { DB } \end{gathered}$	86
	600		HCP50866				
	800		HCP50868				
	1200		HCP508612N				

HCP Main Circuit Breaker[20]-includes 3-pole

36	600	2LC	HCP18686M	HCW68T()	HCW68T()D	$\begin{gathered} \text { HC4268- } \\ \text { DB } \\ \hline \end{gathered}$	68
	800		HCP18688M				
72	600	4LC	HCP36866M	HCW86T()	HCW86T()D	$\begin{gathered} \text { HC4286- } \\ \text { DB } \\ \hline \end{gathered}$	86
	800		HCP36868M				

HCR-U Universal Main Lugs or Main Circuit Breaker [21]-3-pole
Suitable for use as service equipment when provided with a main circuit breaker and service barrier kit.[19] For Main Lugs panel, order sub-feed lug kit catalog number S33930 and back feed as main lugs. For Main Circuit Breaker panel, order plug-on I-Line type PG, PJ, PL, RGC, RJC, or RLC [21] circuit breakers from page 9-62 and page 9-63, and back feed as the main circuit breaker. (Order solid neutral separately)

$108[22]$	1200	6PL or 3RLC	HCR548612U	HCR86T() $[23]$	HCR86T()D	HC4486- DB	86

Table 9.105: Main Circuit Breaker Interiors -Standard Frame Types [20]

Main Circuit Breaker Ampacity	Panelboard Type	Factory Supplied Main Circuit Breaker
400	HCJ	LAP36400MB
600	HCJ, HCP	MGP36600
or	or	
800		MGP36800

Table 9.106: Standard Copper Bus Interiors

Type	Main Ampacity
HCJ, HCP-SU	800
HCP, HCR-U	800 and Above

NOTE: Merchandised copper interiors are not available in all ampacities.
Table 9.107: Circuit Breaker / Sub-feed Lug Kit Mounting Space Requirement

Type of Circuit Breaker	Maximum Ampacity	No. Poles	Inch Mounting Requirements	Type of Circuit Breaker	Maximum Ampacity	No. of Poles	Inch Mounting Requirements
BD, BG, BJ	125	1	1.5	$\begin{aligned} & \hline \text { JD, JG, JJ, JL, JR, } \\ & \text { SL250 } \end{aligned}$	250	2,3	4.5
BD, BG, BJ		2	3	LA, LH, SL400	400		6
BD, BG, BJ		3	4.5	LG, LJ, LL, LR	600		6
HD, HG	150	2	3	Smart Cell	NA		6
HD, HG		3	4.5	MG, MJ, SL800, PGC, PJC, PLC	800		9
HJ, HL, HR		2, 3	4.5	$\begin{aligned} & \text { PG, PJ, PL, } \\ & \text { S33931 } \end{aligned}$	1200		9
$\begin{aligned} & \hline \text { QB, QD, QG, } \\ & \text { QJ } \end{aligned}$	225	2	3	$\begin{aligned} & \text { RG, RJ, RL, RGC, } \\ & \text { RJC, RLC, S33930 } \end{aligned}$			15
QB, QD, QG,	225		45				

[11] JDA circuit breakers with field installable ground fault kits may be mounted in type HCP, HCP-SU, and HCR-U panelboards as shown, and require L-frame mounting space.
12] PG, PJ, and PL circuit breakers are available with both thermal-magnetic equivalent and MicroLogic trip. The MicroLogic circuit breakers are available 80% and 100% rated. "C" suffix denotes a 100\% rating.
[13] JD circuit breakers with field installable ground fault kits may be mounted in type HCP, HCP-SU, and HCR-U panelboards as shown, and require L-frame mounting space
[14] When RL main circuit breakers with equipment ground fault are applied on a 3Ø4W system, order solid neutral catalog number HCR12SNCT. The HCR12SNCT includes a neutral current transformer.
15] Order solid neutral from page 9-50.
[16] Add " F " for flush mount, " S " for surface mount
[17] For 42 in. wide weatherproof enclosures, see Table 9.114 Type 3R/5/12 Enclosures, page 9-51
[18] Add-on door kit available. Example: For HCW50TS trim kit, order HCW50D door kit.
[19] Suitable for use as service equipment if equipped with an integral main circuit breaker or when not more than six main disconnecting means are provided and the panelboard is not used as a lighting and appliance branch circuit panelboard. (Not applicable in Canada)
[20] Circuit breaker interrupt ratings, see Interrupting Ratings Codes (kA), page 9-57
[21] When RL main circuit breakers with equipment ground fault are applied on a 3Ø4W system, order solid neutral catalog number HCR12SNCT. The HCR12SNCT includes a neutral current transformer
[22] 15 in . of mounting space is taken up by the back fed main lug kit or RG, RJ, RL main circuit breaker, leaving 93 in. of branch circuit breaker mounting space.
[23] Add-on door kit available. Example: For HCR86TS trim kit, order HCW86D door kit

Accessories

Equipment Ground Bar

Solid Neutral

Table 9.108: I-Line Merchandised Panelboard Accessories

Table 9.109: Blank Extensions

Application	Circuit Breaker Mounting Ht.	Branch Circuit Side	Catalog Number
All applications, except PowerPacT H / J with MicroLogic trip unit 3, 5 and 6	1.5 in .	Wide Side	HLW1BL
	4.5 in .		HLW4BL
All applications, except PowerPacT H/J with MicroLogic trip unit 3, 5 and 6	1.5 in .	Narrow Side	HLN1BL
	4.5 in.		HLN4BL
Only PowerPacT H/J circuit breakers with MicroLogic trip unit 3, 5 and 6	4.5 in .	Narrow Side	HLN4EBL
Only PowerPacT H/J circuit breakers with MicroLogic trip unit 3, 5 and 6	4.5 in .	Wide Side	HLW4EBL

[25] Used on Type HCJ.
[26] Used on $400 \mathrm{~A}, 600 \mathrm{~A}, 800 \mathrm{~A}$, and 1200 A HCP (main lugs), and 600 A and 800 A (main circuit breaker).
[27] Used on Type HCP-SU (single row).
[28] Used on Type HCR-U.

I-Line Merchandised Panelboard Accessories

Refer to Catalog 2110CT9701

Table 9.110: UL Service Entrance Barriers for I-Line Panelboards with Backfeed Main Circuit Breaker[29]

I-Line Panelboard Type	Backfeed Main Circuit Breaker	Catalog Number [30]
HCJ	H, J	ILBFMHCJHULC
HCP	H, J	ILBFMHCPHJULC
	LA, LH, PowerPacT L	ILBFMHCPLULC
	M, P	ILBFMHCPMPULC
HCR	LA, LH, PowerPacT L	ILBFMHCRLULC
	M	ILBFMHCRMULC
	ILBFMHCRPULC	
	P	ILBFMHCRRULC

Table 9.111: UL Service Entrance Barrier Kits for I-Line Vertical Mounted Mains[29]

Main Circuit Breaker	Determining Factors	Catalog Number [30]
MG, MJ	4 wires per phase (for breakers with AL1200P24K or CU1200P24K lug kit)	ILMLC4W
	3 wires per phase (for breakers with AL80023K or CU80023K lug kit)	ILMLC3W
	2 wires per phase (for breakers with AL800P6K or AL800P7K lug kit)	ILMLC2W
$\begin{gathered} \text { PowerPacT } \\ L \end{gathered}$	All instances	PPLLC
LA/LH	All instances	LALLC

Table 9.112: Solid Neutral Lug Quantities and Sizes

Solid Neutral Assembly	Terminal Wire Range
HC2SN	$(1) 6-300,(9) \# 1 / 0-14,(45) \# 4-14$
HC4SN	$(7) 6-350,(45) \# 4-14$
HC6SN	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HC8SN	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCPSU8SN	$(4) 3 / 0-600,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$,
HCW4SN	$(2) 4-600,(7) 6-350,(45) \# 4-14$
HCW6SN	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCW8SN	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCW12SN	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCWM12SN	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HC6SNALCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HC8SNALCU	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCPSU8SNALCU	$(4) 3 / 0-600,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCP4SNALCU	$(2) 4-600,(7) 6-350,(45) \# 4-14$
HCP6SNALCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCP8SNALCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCP12SNALCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCR12SNALCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HC6SNCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HC8SNCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCPSU8SNCU	$(4) 3 / 0-600,(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$,
HCW4SNCU	$(2) 2-600,(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCW6SNCU	$(2) 2-600,(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCW8SNCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCP12SNCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCW12SNCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCR12SNCU	$(4) 3 / 0-750,(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCR2SNCTW	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCR2SNCTWALCU	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCR2SNCTWCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCR12SNCTW	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCR12SNCTWALCU	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCR12SNCTWCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCPSU2SNCTW	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCPSU2SNCTWALCU	$(7) 6-350,(9) \# 1 / 0-14,(34) \# 4-14$
HCPSU2SNCTWCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCPSU8SNCW	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCPSU12SNCTWALCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCPSU12SNCTWCU	$(7) 6-350,(9) \# 1 / 0-14,(28) \# 4-14$
HCP16NALCU	$(35) 350,(9) \# 1 / 0-14,(17) \# 4-14$
HCR24NALCU	$(8) 750,(21) 350,(9) \# 1 / 0-14,(17) \# 4-14$
HCPSU16NALCU	$(8) 750,(21) 350,(9) \# 1 / 0-14,(17) \# 4-14$

Table 9.113: Panelboard Adapter Kits

Crimp Lug Adapter Kits [31]	I-Line Panelboard Type	
	HCJ	HCP, HCR-U [32]
	HCM400VCA	HCW400VCA
60 A	HCM600VCA	HCW60VCA
800 A	HCM800VCA	HCW800VCA
1200 A	-	HCW1200VCA

Table 9.114: Type 3R/5/12 Enclosures

Catalog Number	Interior Type	Dimensions (In.)		
		H	W	D
HC4250WP	HCP	50	42	12.95
HC4259WP	HCP	59	42	12.95
HC4268WP	HCP	68	42	12.95
HC4286WP	HCP	86	42	12.95
HC4486WP	HCR-U	86	44	14.50

[29] For US only.
[30] For panelboards manufactured after 1 January 2017.
[31] For use with MLO panel, order VCEL lugs seperately.
[32] Not for use with P- or R-frame circuit breakers or sub-feed kits S33930 or S33931.

Table 9.115: Box Extensions

	Catalog Number	Interior Type	Extension
	HC2609DEX (F or S)	HCP-SU	9 in .
	HC3209EX (F or S)	HCJ	9 in .
	HC4212DEX (F or S)	HCP	12 in .
	HC4406DEX (F or S)	HCR-U	6 in.
	HC4412DEX (F or S)	HCR-U	12 in .

Table 9.116: I-Line/QMB PaneIBoard Drip Hood Kits
The Drip Hoods listed below are intended for use on surface mounted HC and QMB boxes only. Select the appropriate Drip Hood based on Interior Type, Width, and Depth from the following table. The Drip Hoods are designed to fit on the outside of the boxes. The Drip Hood will increase the enclosure rating of the box from Type 1 to Type 2. Reference Instruction Bulletin 80043-401-03.

Catalog Number	Interior Type	Dimensions (In.)	
		Width	Depth
HCT2DH32D9	HCJ	32	9.5
HCT2DH42	HCP	42	9.5
HCT2DH26D9	HCP-SU	26	9.5
HCT2DH47	HCP (L5)	47	9.5
HCT2DH56	HCP (PL)	56	9.5
HCT2DH42D12	HCP (DB)	42	12.5
HCT2DH44	HCR-U	44	9.5
HCT2DH49	HCR-U (L5)	49	9.5
HCT2DH58	HCR-U (PL)	58	9.5
HCT2DH44D12	HCR-U (DB)	44	12.5
QMT2DH38	QMB	38	11.5

1. Box Types noted with (PL) are standard width boxes with an additional 14 in. PowerLogic extension.
2. Box Types noted with (L5) are standard width boxes with an additional 5 in. side extension.
3. Box Types noted with (DB) have additional box depth.

Table 9.117: Sub-feed Lug Kits [33][34][35]

Ampere Rating	Height		Catalog Number	Max. Short Circuit System Ratings RMS Symmetrical Amperes			Protected by Circuit Breaker	For Use in I-Line Panelboard Types
	In.	(mm)		240 Vac	480 Vac	600 Vac		
250 A	4.5	114	SL250	200,000	200,000	100,000	$\begin{gathered} \text { FA, FD, FG, FH, FJ, HD, } \\ \text { HG, HJ, HL, HR, JD, JG, } \\ \text { JJ, JL, JR, KI } \end{gathered}$	HCJ, HCP, HCP-SU, HCR-U
400 A	6	152	SL400 [35]	200,000	200,000	100,000	HD, HG, HJ, HL, HR, JD, JG, JJ, JL, JR, LA, LH, DG, DJ, DL, LG, LJ, LL, LR ("L" \& "D" FRAME 400 A MAX.)	HCP, HCP-SU, HCR-U (wide side only)
800 A	9	229	SL800M5	125,000	100,000	25,000	FA, FD, FG, FH, FJ, KA, KH, KC, KI, HD, HG, HJ, HL, HR, JD, JG, JJ, JL, JR, MA, MH, MX, MG, PG, MJ, PJ, PK, PL, DG, DJ, DL, LG, LJ, LL, LR	HCJ, HCP, HCP-SU, HCR-U
1200 A	15	381	S33930	125,000	100,000	50,000	FA, FD, FG, FH, FJ, KA, KH, KC, KI, HD, HG, HJ, HL, HR, JD, JG, JJ, JL, JR, LA, LH, LC, LI, MA, MH, MX, NA, NC, NX, MG, PG, MJ, PJ, PK, PL, RG, RJ, RL, RK, DG, DJ, DL, LG, LJ, LL, LR	HCR-U
1200 A	9	229	$\begin{aligned} & \text { SL1200P5, } \\ & \text { SL1200P6, } \\ & \text { SL1200P7 } \end{aligned}$	125,000	100,000	50,000	FA, FD, FG, FH, FJ, KA, KH, KC, KI, HD, HG, HJ, HL, HR, JD, JG, JJ, JL, JR, MG, PG, MJ, PJ, PK, PL, RG, RJ, RL, RK, DG, DJ, DL, LG, LJ, LL, LR	HCP, HCP-SU, HCR-U

NOTE: S33930, S33931, SL1200P5, SL1200P6, SL1200P7, SL Kits are rated 1200 A and may be applied to 1200 ampere loads when installed into HCRU panelboards. However, when installed into HCP and HCPSU panelboards they are only rated 800 amperes maximum due to restricted wire bending space.

Table 9.118: Sub-feed Lug kit terminal data

Catalog No. (Prefix)	No. Poles	Ampere Rating	Standard Lug Wire Size [36]
SL100	3	100	\#14-1/0 AWG Cu or \#12-1/0 AWG Al
SL250	3	250	(1) \#4 AWG-300 kcmil
SL400	3	400	(1) \#1 AWG-600 kcmil or 2-\#1 AWG-250 kcmil
SL800M5	3	800	$(3) \# 3 / 0$ AWG-500 kcmil
S33930	3	1200	$(4) \# 3 / 0$ AWG-600 kcmil
SL1200P5	3	1200	(4) \#3/0 AWG-500 kcmil
SL1200P6	3	1200	(3) 350-600 kcmil
SL1200P7	3	1200	(3) \#3/0 AWG-750 kcmil

[33] Plug-on in same manner as a branch circuit breaker
[34] For other ratings, see the latest edition of I-Line Information Manual, \#80043-309-xx.
35] SL400 cannot be used in HCJ panelboards due to inadequate wire bending space.
[36] Unless otherwise specified, wire sizes apply to both aluminum and copper conductors.

2-pole, 3 in. (6 mm) Mounting Height

3 -pole, 4.5 in . (114 mm) Mounting Height

PowerPacT ${ }^{\text {TM }}$ B-frame, Thermal Magnetic

Accessories are located in Section 7 PowerPacT Accessories, page 7-51.
Table 9.119: B-frame Interrupting Ratings

	Interrupting Rating			
	D	\mathbf{G}	\mathbf{J}	\mathbf{K}
	25 kA	65 kA	60 kA	100 kA
$480 / 277 \mathrm{Vac}$	18 kA	35 kA	65 kA	
480 Vac	18 kA	35 kA	65 kA	65 kA
$600 \mathrm{Y} / 347 \mathrm{Vac}$	14 kA	18 kA	25 kA	65 kA
1 P 125 Vdc	10 kA	20 kA	50 kA	-
$2-3 \mathrm{P} 250 \mathrm{Vdc}$	10 kA	20 kA	50 kA	-

Table 9.120: PowerPacT B-frame, 125 A max, Thermal Magnetic UL Circuit Breaker (PowerPacT B-frame 1-pole branch circuit breakers utilize 1.5 in. of I-Line mounting space, 2-pole branch circuit breakers utilize 3 in. of I-Line mounting space and 3-pole B-frame circuit breakers utilize 4.5 in. of I-Line mounting space.) Refer to Table 9.122 Phase Options Suffix Numbers for B/Q-frame Circuit Breakers, page 9-55 Example for phase options and suffix information.

D-SCCR					
	1-pole	2-pole	3-pole	Fixed AC Magnetic Trip	
Amps	277 Vac	480/277 Vac	480/277 Vac	Hold	Trip
15	BDA14015	BDA24015Y	BDA34015Y	400 A	600 A
20	BDA14020	BDA24020Y	BDA34020Y	400 A	600 A
25	BDA14025	BDA24025Y	BDA34025Y	400 A	600 A
30	BDA14030	BDA24030Y	BDA34030Y	400 A	600 A
35	BDA14035	BDA24035Y	BDA34035Y	400 A	600 A
40	BDA14040	BDA24040Y	BDA34040Y	400 A	600 A
45	BDA14045	BDA24045Y	BDA34045Y	400 A	600 A
50	BDA14050	BDA24050Y	BDA34050Y	480 A	720 A
60	BDA14060	BDA24060Y	BDA34060Y	640 A	960 A
70	BDA14070	BDA24070Y	BDA34070Y	640 A	960 A
80	BDA14080	BDA24080Y	BDA34080Y	800 A	1200 A
90	BDA14090	BDA24090Y	BDA34090Y	1000 A	1500 A
100	BDA14100	BDA24100Y	BDA34100Y	1000 A	1500 A
110	BDA14110	BDA24110Y	BDA34110Y	1000 A	1500 A
125	BDA14125	BDA24125Y	BDA34125Y	1000 A	1500 A
G - SCCR					
	1-pole	2-pole	3-pole	Fixed AC Magnetic Trip	
Amps	277 Vac	480/277 Vac	480/277 Vac	Hold	Trip
15	BGA14015	BGA24015Y	BGA34015Y	400 A	600 A
20	BGA14020	BGA24020Y	BGA34020Y	400 A	600 A
25	BGA14025	BGA24025Y	BGA34025Y	400 A	600 A
30	BGA14030	BGA24030Y	BGA34030Y	400 A	600 A
35	BGA14035	BGA24035Y	BGA34035Y	400 A	600 A
40	BGA14040	BGA24040Y	BGA34040Y	400 A	600 A
45	BGA14045	BGA24045Y	BGA34045Y	400 A	600 A
50	BGA14050	BGA24050Y	BGA34050Y	480 A	720 A
60	BGA14060	BGA24060Y	BGA34060Y	640 A	960 A
70	BGA14070	BGA24070Y	BGA34070Y	640 A	960 A
80	BGA14080	BGA24080Y	BGA34080Y	800 A	1200 A
90	BGA14090	BGA24090Y	BGA34090Y	1000 A	1500 A
100	BGA14100	BGA24100Y	BGA34100Y	1000 A	1500 A
110	BGA14110	BGA24110Y	BGA34110Y	1000 A	1500 A
125	BGA14125	BGA24125Y	BGA34125Y	1000 A	1500 A
J-SCCR					
	1-pole	2-pole	3-pole	Fixed AC Magnetic Trip	
Amps	347 Vac	600Y/347 Vac	600Y/347 Vac	Hold	Trip
15	BJA16015	BJA26015	BJA36015	400 A	600 A
20	BJA16020	BJA26020	BJA36020	400 A	600 A
25	BJA16025	BJA26025	BJA36025	400 A	600 A
30	BJA16030	BJA26030	BJA36030	400 A	600 A
35	BJA16035	BJA26035	BJA36035	400 A	600 A
40	BJA16040	BJA26040	BJA36040	400 A	600 A
45	BJA16045	BJA26045	BJA36045	400 A	600 A
50	BJA16050	BJA26050	BJA36050	480 A	720 A
60	BJA16060	BJA26060	BJA36060	640 A	960 A
70	BJA16070	BJA26070	BJA36070	640 A	960 A
80	BJA16080	BJA26080	BJA36080	800 A	1200 A
90	BJA16090	BJA26090	BJA36090	1000 A	1500 A
100	BJA16100	BJA26100	BJA36100	1000 A	1500 A
110	BJA16110	BJA26110	BJA36110	1000 A	1500 A
125	BJA16125	BJA26125	BJA36125	1000 A	1500 A

Molded Case Circuit Breakers for I-Line Panelboards
Refer to I-Line Power Distribution Panelboards

I-Line HQO Accessory

For phase option information see Table 9.122.
Table 9.121: QO ${ }^{\text {TM }}$ Distribution Panel-240 Vac Max. Only Mounts in Type HCJ, HCP, HCP-SU, or HCR-U I-Line panelboards, 30 A max. branch circuit breaker.

Maximum No. 1-pole QO Circuit Breakers	Phase Connection	Mounting Height		2-pole Catalog Number	3-pole Catalog Number
		4.5	114		-
6	BC	4.5	114	HQO206BC	-
6	AC	4.5	114	HQO206AC	-
6	ABC	4.5	114	-	HQO306
6	CBA	4.5	114	-	HQO306CBA

Table 9.122: Phase Options Suffix Numbers for B/Q-frame Circuit Breakers

Phase Option Number	Phase Connection	1-pole	2-pole	3-pole
1	A	BDA140151	-	-
3	B	BDA140153	-	-
5	C	BDA140155	-	-
1	AB	-	QBA220701	-
2	AC	-	QBA220702	-
3	BA	-	QBA220703	-
4	BC	-	QBA220704	-
5	CA	-	QBA220705	-
6	CB	-	QBA220706	-
Standard $[37]$	ABC	-	-	-
6	CBA	-	-	QBA32070

Refer to I-Line Power Distribution Panelboards

PowerPacT Q-frame for I-Line ${ }^{\text {TM }}$ Panelboards and Switchboards Table 9.123: PowerPacT ${ }^{\text {TM }}$ Q-frame- 225 A, Thermal-magnetic (240 Vac)
(PowerPacT Q-frame 2-pole branch circuit breakers utilize 3 in. of I-Line mounting space and 3-pole Q-frame circuit breakers utilize 4.5 in . of I-Line mounting space.)

Ampere Rating	AC Magnetic Trip Settings		"B" Interrupting	"D" Interrupting	"G" Interrupting	"J" Interrupting [38]
	Hold	Trip	Catalog Number	Catalog Number	Catalog Number	Catalog Number
2-pole, 240 Vac [39].						
70 A	1000	1800	QBA22070()	QDA22070()	QGA22070()	QJA22070()
80 A			QBA22080()	QDA22080()	QGA22080()	QJA22080()
90 A			QBA22090()	QDA22090()	QGA22090()	QJA22090()
100 A	1200	2400	QBA22100()	QDA22100()	QGA22100()	QJA22100()
110 A			QBA22110()	QDA22110()	QGA22110()	QJA22110()
125 A			QBA22125()	QDA22125()	QGA22125()	QJA22125()
150 A			QBA22150()	QDA22150()	QGA22150()	QJA22150()
175 A			QBA22175()	QDA22175()	QGA22175()	QJA22175()
200 A			QBA22200()	QDA22200()	QGA22200()	QJA22200()
225 A			QBA22225()	QDA22225()	QGA22225()	QJA22225()
3-pole, 240 Vac [40]						
70 A	1000	1800	QBA32070()	QDA32070()	QGA32070()	QJA32070()
80 A			QBA32080()	QDA32080()	QGA32080()	QJA32080()
90 A			QBA32090()	QDA32090()	QGA32090()	QJA32090()
100 A	1200	2400	QBA32100()	QDA32100()	QGA32100()	QJA32100()
110 A			QBA32110()	QDA32110()	QGA32110()	QJA32110()
125 A			QBA32125()	QDA32125()	QGA32125()	QJA32125()
150 A			QBA32150()	QDA32150()	QGA32150()	QJA32150()
175 A			QBA32175()	QDA32175()	QGA32175()	QJA32175()
200 A			QBA32200()	QDA32200()	QGA32200()	QJA32200()
225 A			QBA32225()	QDA32225()	QGA32225()	QJA32225()

Table 9.124: Interrupt Ratings (kA)

	QB	QD	QG	QJ [42]
240 V	10	25	65	100
480 V	-	-	-	-
600 V	-	-	-	-

Padlock attachments for Q-frame are available.

Molded Case Circuit Breakers for l-Line Panelboards

Refer to I-Line Power Distribution Panelboards

HD/HG/HJ/HL/HR 2- and 3-pole Circuit Breaker

Table 9.126: Interrupting Ratings Codes (kA)

Voltage	D	G	J	L	R
240 V	25	65	100	125	200
$480 \mathrm{Y} / 277$	18	35	65	100	200
480 V	18	35	65	100	200
$600 \mathrm{Y} / 347$	14	18	25	50	100
600 V	14	18	25	50	100

H- and J-frame for I-Line ${ }^{\text {TM }}$ Panelboards and Switchboards Table 9.125: H-frame 150 A Thermal-Magnetic UL Current-Limiting[43] Circuit Breakers (600 Vac, 250 Vdc) With Factory Sealed Trip Unit[44] Suitable for Reverse Connection[44]
(PowerPacT HD and HG 2-pole circuit breakers utilize 3 in. of I-Line mounting space, HJ and HL 2-pole circuit breakers utilize 4.5 in . of I-Line mounting space, all 3-pole H and J-frame circuit breakers utilize 4.5 in . of I-Line mounting space.)

Current Rating @ $40^{\circ} \mathrm{C}$	Fixed AC Magnetic Trip		Cat. No. [45]	Terminal Wire Range
	Hold	Trip		
H-frame, 150A 2P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 250 \mathrm{Vdc}$ [46]				
15 A	350 A	750 A	H()A26015()	$\begin{gathered} \text { AL150HD } \\ \text { 14-3/0 AWG } \\ \text { Al or Cu } \end{gathered}$
20 A	350 A	750 A	H()A26020()	
25 A	350 A	750 A	H()A26025()	
30 A	350 A	750 A	H()A26030()	
35 A	400 A	850 A	H()A26035()	
40 A	400 A	850 A	H()A26040()	
45 A	400 A	850 A	H()A26045()	
50 A	400 A	850 A	H()A26050()	
60 A	800 A	1450 A	H()A26060()	
70 A	800 A	1450 A	H()A26070()	
80 A	800 A	1450 A	H()A26080()	
90 A	800 A	1450 A	H()A26090()	
100 A	800 A	1700 A	H()A26100()	
110 A	900 A	1700 A	H()A26110()	
125 A	900 A	1700 A	H()A26125()	
150 A	900 A	1700 A	H()A26150()	
H-frame 150A 3P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 250 \mathrm{Vdc}$				
15 A	350 A	750 A	H()A36015	$\begin{gathered} \text { AL150HD } \\ \text { 14-3/0 AWG } \\ \text { Al or Cu } \end{gathered}$
20 A	350 A	750 A	H()A36020	
25 A	350 A	750 A	H()A36025	
30 A	350 A	750 A	H()A36030	
35 A	400 A	850 A	H()A36035	
40 A	400 A	850 A	H()A36040	
45 A	400 A	850 A	H()A36045	
50 A	400 A	850 A	H()A36050	
60 A	800 A	1450 A	H()A36060	
70 A	800 A	1450 A	H()A36070	
80 A	800 A	1450 A	H()A36080	
90 A	800 A	1450 A	H()A36090	
100 A	800 A	1700 A	H()A36100	
110 A	900 A	1700 A	H()A36110	
125 A	900 A	1700 A	H()A36125	
150 A	900 A	1700 A	H()A36150	

Table 9.127: J-frame 250 A Thermal-Magnetic UL Current-Limiting[47]Circuit Breakers (600 Vac, 250 Vdc) With Factory Sealed Trip Unit[44] Suitable for Reverse Connection[44]
(All PowerPacT J-frame circuit breakers, both 2- and 3-pole, utilize 4.5 in . of I-Line mounting space.)

Current Rating @ $40^{\circ} \mathrm{C}$	Adjustable AC Magnetic Trip		Cat. No.[45]	Terminal Wire Range
	Low	High		
J-frame 250A 2P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 250 \mathrm{Vdc}$ [48].				
150 A	750 A	1500 A	J()A26150()	AL175JD 4-4/0 AWG Al or Cu
175 A	875 A	1750 A	J()A26175()	
200 A	1000 A	2000 A	J()A26200()	$\begin{gathered} \text { AL250JD } \\ \text { 3/0 AWG-350 kcmil } \\ \text { Al or } \mathrm{Cu} \end{gathered}$
225 A	1125 A	2250 A	J()A26225()	
250 A	1250 A	2500 A	J()A26250()	
J-frame 250A 3P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 250 \mathrm{Vdc}$				
150 A	750 A	1500 A	J()A36150	$\begin{gathered} \text { AL175JD } \\ 4-4 / 0 \text { AWG Al or Cu } \end{gathered}$
175 A	875 A	1750 A	J()A36175	
200 A	1000 A	2000 A	J()A36200	$\begin{gathered} \text { AL250JD } \\ \text { 3/0 AWG-350 kcmil } \\ \text { Al or Cu } \end{gathered}$
225 A	1125 A	2250 A	J()A36225	
250 A	1250 A	2500 A	J()A36250	

[43] Circuit breakers with J and L interrupting ratings are UL certified as current limiting.
[44] See Supplemental Digest Section 3 for circuit breakers with field-interchangeable trip units.
[45] To complete catalog number, replace the blank with the appropriate interrupting rating ($\mathrm{D}, \mathrm{G}, \mathrm{J}, \mathrm{L}$).
[46] 2 pole circuit breaker catalog numbers are completed by adding the required phase connection number as a suffix see Table $9.134 \mathrm{H} / \mathrm{J} / \mathrm{L}-\mathrm{Frame}$ Circuit Breaker/Switch Phase OptionsExample HDA26150(), page 9-59.
[47] Circuit breakers with J, L, and R interrupting ratings are UL certified as current limiting.
[48] 2 pole circuit breaker catalog numbers are completed by adding the required phase connection number as a suffix see Table 9.134 H/J/L-Frame Circuit Breaker/Switch Phase OptionsExample HDA26150(), page 9-59

Table 9.128: H-frame 150 A and J-frame 250 A MicroLogic Electronic Trip UL Current-Limiting[49]Circuit Breakers
(600 Vac) With Factory Sealed Trip Unit/50] Suitable for Reverse Connection [51] (PowerPacT Electronic Trip H- and J-frame circuit breakers utilize 4.5 in . of I-Line mounting space.)

Electronic Trip Unit			Sensor Rating	Cat. No.[52]	Terminal
Type	Function	Trip Unit			
$600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}, 3 \mathrm{P}$					
MicroLogic Standard	LI	3.2[53]	60 A	H()A36060U31X	AL150HD[54]
			100 A	H()A36100U31X	
			150 A	H()A36150U31X	
			250 A	J()A36250U31X	AL250JD[55]
	LSI	3.2S[53]	60 A	H()A36060U33X	AL150HD[54]
			100 A	H()A36100U33X	
			150 A	H()A36150U33X	
			250 A	J ()A36250U33X	AL250JD[55]
MicroLogic Ammeter	LSI	5.2A	60 A	H()A36060U43X	AL150HD[54]
			100 A	H()A36100U43X	
			150 A	H()A36150U43X	
			250 A	J ()A36250U43X	AL250JD[55]
MicroLogic Energy	LSI	5.2E	60 A	H()A36060U53X	AL150HD[54]
			100 A	H()A36100U53X	
			150 A	H()A36150U53X	
			250 A	J()A36250U53X	AL250JD[55]
MicroLogic Ammeter	LSIG	6.2A	60 A	H()A36060U44X	AL150HD[54]
			100 A	H()A36100U44X	
			150 A	H()A36150U44X	
			250 A	J()A36250U44X	AL250JD[55]
MicroLogic Energy	LSIG	6.2E	60 A	H()A36060U54X	AL150HD[54]
			100 A	H()A36100U54X	
			150 A	H()A36150U54X	
			250 A	J()A36250U54X	AL250JD[55]

Table 9.129: Interrupting Ratings Codes (kA)

Voltage	D	G	J	L	R
240 V	25	65	100	125	200
480 V	18	35	65	100	200
600 V	14	18	25	50	100

J-frame Mission Critical Circuit Breaker
Table 9.130: J-frame 250 A MicroLogic Electronic Trip Mission Critical Circuit Breakers (480/277 Vac) With Factory Sealted Trip Units Suitable for Reverse Connection[56]

Electronic Trip	Trip	Trip Unit	Continuous	D Interrupting	G Interrupting	J Interrupting	L Interrupting	Terminal
Unit Type	Function	Trip Unit	Current	Cat. No.	Cat. No.	Cat. No.	Cat. No.	
Standard	LI	3.2 W	250	JDA34250WU31X	JGA34250WU31X	JJA34250WU31X	JLA34250WU31X	AL250JD[57]
Standard	LSI	3.2S-W	250	JDA34250WU33X	JGA34250WU33X	JJA34250WU33X	JLA34250WU33X	AL250JD[57]
High Perf. Ammerter	LSI	5.2A-W	250	JDA34250WU43X	JGA34250WU43X	JJA34250WU43X	JLA34250WU43X	AL250JD[57]
High Perf. Energy	LSI	5.2E-W	250	JDA34250WU53X	JGA34250WU53X	JJA34250WU53X	JLA34250WU53X	AL250JD[57]
High perf. Ammerter	LSIG	6.2A-W	250	JDA34250WU44X	JGA34250WU44X	JJA34250WU44X	JLA34250WU44X	AL250JD[57]
High Perf. Energy	LSIG	6.2E-W	250	JDA34250WU54X	JGA34250WU54X	JJA34250WU54X	JLA34250WU54X	AL250JD[57]

L-frame Mission Critical Circuit Breaker

Table 9.131: L-frame 600 A MicroLogic Electronic Trip Mission Critical Circuit Breakers (480/277 Vac) With Factory Sealed Trip Units Suitable for Reverse Connection[56]

Electronic Trip Unit Type	Trip Function	Trip Unit	Continuous Current	G Interrupting	$\frac{\mathrm{J} \text { Interrupting }}{\text { Cat. No. }}$	L Interrupting	Terminal
Standard	LI	3.3 W	250	LGA34250WU31X	LJA34250WU31X	LLA34250WU31X	AL400L61K3[58]
			400	LGA34400WU31X	LJA34400WU31X	LLA34400WU31X	AL600LF52K3[59]
			600	LGA34600WU31X	LJA34600WU31X	LLA34600WU31X	
Standard	LSI	3.3S-W	250	LGA34250WU33X	LJA34250WU33X	LLA34250WU33X	AL400L61K3[58]
			400	LGA34400WU33X	LJA34400WU33X	LLA34400WU33X	AL600LF52K3[59]
			600	LGA34600WU33X	LJA34600WU33X	LLA34600WU33X	
High Perf. Ammeter	LSI	5.3A-W	400	LGA34400WU43X	LJA34400WU43X	LLA34400WU43X	AL600LF52K3[59]
			600	LGA34600WU43X	LJA34600WU43X	LLA34600WU43X	
High Perf. Energy	LSI	5.3E-W	400	LGA34400WU53X	LJA34400WU53X	LLA34400WU53X	AL600LF52K3[59]
			600	LGA34600WU53X	LJA34600WU53X	LLA34600WU53X	
High Perf. Ammeter	LSIG	6.3A-W	400	LGA34400WU44X	LJA34400WU44X	LLA34400WU44X	AL600LF52K3[59]
	LSIG	6.3E-W	600	LGA34600WU44X	LJA34600WU44X	LLA34600WU44X	AL600LF52K3[59]
High Perf. Energy			600	LGA34600WU54X	LJA34600WU54X	LLA34600WU54X	

Table 9.132: PowerPacT ${ }^{\text {TM }} \mathrm{H}$-, J-, and L-frame Automatic Molded Case Switches, 600 Vac

Circuit Breaker	Poles	Ampere Rating	G Withstand		L Withstand		R Withstand		Terminal	Wire Range
			Cat. No.	Trip Point	Cat. No.	Trip Point	Cat. No.	Trip Point		
H -frame J Jframe	2[60]	150 A	HGA26000S15()	2250 A	HLA26000S15	2250 A	-	-	-	-
		175 A	JGA26000S17()	3125 A	JLA26000S17	3125 A	-	-	-	-
		250 A	JGA26000S25()	3125 A	JLA26000S25	3125 A	-	-	-	-
	3	150 A	HGA36000S15	2250 A	HLA36000S15	2250 A	HRA36000S15	2250 A	AL150HD	14 AWG-3/0 AWG AI/Cu
		175 A	JGA36000S17	3125 A	JLA36000S17	3125 A	JRA36000S17	3125 A	AL175JD	4-4/0 AWG Al/Cu
		250 A	JGA36000S25	3125 A	JLA36000S25	3125 A	JRA36000S25	3125 A	AL250JD	3/0 AWG-350 kcmil Al/Cu
L-frame	3	400 A	LGA36000S40X	4800 A	LLA36000S40X	4800 A	LRA36000S40X	4800 A	AL150HD	AL600LS52K3 (2) $2 / 0$ AWG-500 kcmil Al/Cu
		600 A	LGA36000S60X	6600 A	LLA36000S60X	6600 A	LRA36000S60X	6600 A	AL250JD	

H-, J-, and L-frame accessories starting on PowerPacT Accessories, page 7-51.
$\mathrm{H}-$-, J-, and L-frame dimensions starting on Molded Case Circuit Breaker Dimensions, page 7-83.
$\mathrm{H}-$-, J-, and L-frame optional lugs Mechanical Lugs, page 7-56.

Table 9.133: Interrupting Ratings Codes (kA)

Voltage	D	G	J	L	R
240 V	25	65	100	125	200
$480 \mathrm{Y} / 277$	18	35	65	100	200
480 V	18	35	65	100	200
$600 \mathrm{Y} / 347$	14	18	25	50	100
600 V	14	18	25	50	100

Table 9.134: H/J/L-Frame Circuit Breaker/Switch Phase Options

-Example HDA26150()			
Phase Option Number	Phase Connection	2-pole	3-pole
1	AB	HDA261501	-
2	AC	HDA261502	-
3	BA	HDA261503	-
4	BC	HDA261504	-
5	CA	HDA261505	-
6	CB	HDA261506	-
Standard	ABC	-	JDA34250WU31X
6	CBA	-	JDA34250WU31X6

Refer to I-Line Power Distribution Panelboards

LA/LH-frame Thermal Magnetic Circuit Breakers
 L-frame circuit breaker utilizes 6 in . of available I-Line bus

Table 9.135: L-frame-400 A, Thermal-magnetic (600 Vac)

Ampere Rating	AC Magnetic Trip Settings		Standard Interrupting	High Interrupting	Terminal Wire
	Low	High	Catalog Number	Catalog Number	Range
2-pole, $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ [61]					
125 A	625	1250	LA26125()	LH26125()	AL400LA (1) \#1 AWG-600 kcmil or (2) \#1 AWG-250 kcmil AL or Cu
150 A	750	1500	LA26150()	LH26150()	
175 A	875	1750	LA26175()	LH26175()	
200 A	1000	2000	LA26200()	LH26200()	
225 A	1125	2250	LA26225()	LH26225()	
250 A	1250	2500	LA26250()	LH26250()	
300 A	1500	3000	LA26300()	LH26300()	
350 A	1750	3500	LA26350()	LH26350()	
400 A	2000	4000	LA26400()	LH26400()	
3-pole, $600 \mathrm{Vac}, 250 \mathrm{Vdc}$					
125 A	625	1250	LA36125	LH36125	AL400LA (1) \#1 AWG-600 kcmil or (2) \#1 AWG-250 kcmil AL or Cu
150 A	750	1500	LA36150	LH36150	
175 A	875	1750	LA36175	LH36175	
200 A	1000	2000	LA36200	LH36200	
225 A	1125	2250	LA36225	LH36225	
250 A	1250	2500	LA36250	LH36250	
300 A	1500	3000	LA36300	LH36300	
350 A	1750	3500	LA36350	LH36350	
400 A	2000	4000	LA36400	LH36400	

LA circuit breaker accessories can be found in Supplemental Digest Section 3.
LA circuit breaker dimensions can be found in Digest Section 7.
Mechanical lug kits for LA, LH, and Q4 circuit breakers can be found in Supplemental Digest Section 3.

Table 9.136: Interrupt Ratings (kA)

	LA	LH
240 V	42	65
480 V	30	35
600 V	22	25

PowerPacT L- and M-frame for I-Line ${ }^{\text {TM }}$ Panelboards and Switchboards
 Table 9.137: L-frame 600 A Circuit Breakers with Lugs and Factory-Sealed Electronic Trip Units Suitable for Reverse Connection[62]
 (L-frame circuit breaker utilizes 6 in . of available I-Line bus)

Electronic Trip Unit			Sensor Rating	Catalog Number[63]	Terminal
Type	Function	Trip Unit			
$600 \mathrm{Vac}, 53 / 60 \mathrm{~Hz}, 3 \mathrm{P}$					
MicroLogic Standard	LI	3.3[64]	250 A	L()A36250U31X	AL400L61K3[65]
			$\begin{aligned} & 400 \mathrm{~A} \\ & 600 \mathrm{~A} \end{aligned}$	L()A36400U31X L()A36600U31X	AL600LF52K3[66] (2) $3 / 0-500 \mathrm{kcmil}$ Al or Cu .
MicroLogic Standard	LSI	3.3S[64]	250 A	L()A36250U33X	AL400L61K3[65]
			$\begin{aligned} & 400 \mathrm{~A} \\ & 600 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { L()A36400U33X } \\ & \text { L()A36600U33X } \end{aligned}$	AL600LF52K3 (2) $3 / 0-500 \mathrm{kcmil}$ Al or Cu .
MicroLogic Ammeter	LSI	5.3A	$\begin{aligned} & 400 \mathrm{~A} \\ & 600 \mathrm{~A} \end{aligned}$	L()A36400U43X L()A36600U43X	
MicroLogic Energy	LSI	5.3E	$\begin{aligned} & 400 \mathrm{~A} \\ & 600 \mathrm{~A} \\ & \hline \end{aligned}$	L()A36400U53X L()A36600U53X	
MicroLogic Ammeter	LSIG	6.3A	$\begin{aligned} & 400 \mathrm{~A} \\ & 600 \mathrm{~A} \end{aligned}$	L()A36400U44X L()A36600U44X	
MicroLogic Energy	LSIG	6.3E	$\begin{aligned} & 400 \mathrm{~A} \\ & 600 \mathrm{~A} \end{aligned}$	L()A36400U54X L()A36600U54X	

Table 9.138: Interrupt Ratings Codes (kA) for PowerPacT L and M Frames

	\mathbf{G}	\mathbf{J}	L [67]	\mathbf{R}
240 V	65	100	125	200
480 V	35	65	100	200
600 V	18	25	50	100

64] 3P circuit breakers with this trip unit can be used for 2 P applications.
[65] AL400L61K3 terminal wire ranges are (1) 2 AWG- 600 kcmil Cu or (1) 2 AWG- 500 kcmil AI.
[66] AL600LFS52K3 terminal wire range is (2) $3 / 0-500 \mathrm{kcmil}$.
[67] L interrupting rating is not available in M-frame.

Molded Case Circuit Breakers for I-Line Panelboards

Refer to I-Line Power Distribution Panelboards
Table 9.139: M-Frame 800 A, Basic Electronic Trip System Type ET 1.0[68] Factory-Sealed Trip Unit
(PowerPacT M-frame circuit breakers utilize 9 in. of the available I-Line bussing.)

Electronic Trip Unit		Ampere Rating	Adjustable Instantaneous Trip Range		Interrupting Rating		Terminal Wire Range
Type	Function		Low	High	G	J	
2P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ [69]							
Basic	Fixed Long-time, Adjustable Instantaneous Trip	400 A	800	4000	MGA26400()	MJA26400()	(3) $3 / 0$ through 500 kcmil Al or Cu
		600 A	1200	6000	MGA26600()	MJA26600()	(3) $3 / 0$ through 500 kcmil Al or Cu
3P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$							
Basic	Fixed Long-time, Adjustable Instantaneous Trip	400 A	800	4000	MGA36400	MJA36400	(3) $3 / 0$ through 500 kcmil Al or Cu
		600 A	1200	6000	MGA36600	MJA36600	(3) $3 / 0$ through 500 kcmil Al or Cu

Table 9.140: M-Frame 800 A, Adjustable Amperage Electronic Trip Unit

Electronic Trip Unit		Adjustable LongTime Settings	Adjustable Instantaneous		Interrupting Rating		Terminal Wire Range
Type	Function		Low	High	G	J	
2P, 600 Vac $50 / 60 \mathrm{~Hz}$ [69]							
Basic	Adjustable Longtime, Adjustable Instantaneous Trip	300-800	2 x	10x	MGA26800()E10	MJA26800()E10	(3) $3 / 0$ through 500 kcmil Al or Cu
3P, $600 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$							
Basic	Adjustable Longtime, Adjustable Instantaneous Trip	300-800	2 x	10x	MGA36800E10	MJA36800E10	(3) $3 / 0$ through 500 kcmil Al or Cu

[^3]L-frame optional lugs, page 7-56.
Table 9.141: Automatic Molded Case Switches- 600 Vac, $50 / 60 \mathrm{~Hz}$

Ampere Rating	2-pole	3 -pole	Withstand Rating [70]			Trip Point Amperes	Terminal Wire Range
	Catalog Number [69]	Catalog Number	240 Vac	480 Vac	600 Vac	AC	
600 A	PJA26000S60()	PJA36000S60	100	65	25	10000	(3) $3 / 0$ through 500 kcmil Al or Cu
800 A	PJA26000S80()	PJA36000S80	100	65	25	10000	
1000 A	PJA26000S10()	PJA36000S10	100	65	25	10000	(4) $3 / 0$ through 500 kcmil Al or Cu
1200 A	PJA26000S12()	PJA36000S12	100	65	25	10000	

[68] The ET 1.0 trip unit cannot be field replaced. The Basic Electronic ET1.0 trip unit (offered in 400 A and 600 A only) does not allow adjustment of the long time trip point setting. It is considered an electronic equivalent of a thermal-magnet circuit breaker.
[69] Fill in parentheses with the following phase connection options: (2) for AC or (5) for CA.
[70] The withstand rating is the fault current, at rated voltage, that the molded case switch will withstand without damage when protected by a circuit breaker with an equal ampere rating

Table 9.142: PowerPacT P- and R-frame Interrupt Ratings Codes

Voltage	P-frame Interrupt Rating				R-frame Interrupt Rating			
	\mathbf{G}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{G}	\mathbf{J}	\mathbf{K}	\mathbf{L}
240 Vac	65 kA	100 kA	65 kA	125 kA	65 kA	100 kA	65 kA	125 kA
480 Vac	35 kA	65 kA	50 kA	100 kA	35 kA	65 kA	65 kA	100 kA
600 Vac	18 kA	25 kA	50 kA	25 kA	18 kA	25 kA	65 kA	50 kA

PowerPacT P- and R-frame for I-Line ${ }^{\text {TM }}$ Panelboards and Switchboards

Table 9.143: PowerPacT P-frame 1200 A ($600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$) 3P Circuit Breaker with Electronic Trip Unit
(PowerPacT P-frame circuit breakers utilize 9 in. of the available I-Line bussing.)

Electronic Trip Unit			Sensor Rating	Cat. No.[71][72][73][74]	Terminal Wire Range
Type	Function	Code			
Basic Electronic Trip Unit (Not Interchangeable)	Fixed long-time, Adjustable Instantaneous	ET1.01	600 A	P()A36060	(3) 3/0 AWG-500 kcmil Al or Cu
			800 A	P()A36080	
			1000 A	P()A36100	(4) $3 / 0$ AWG- 500 kcmil Al or Cu AL1200P24K
			1200 A	P()A36120	
MicroLogic Interchangeable Standard Trip Unit	LI	3.0	250 A	$\mathrm{P}($)A36025(C)U31A	(3) $3 / 0$ AWG- 500 kcmil Al or CuAL800M 23 K
			400 A	P()A36040(C)U31A	
			600 A	P()A36060(C)U31A	
			800 A	P()A36080(C)U31A	
			1000 A	P()A36100U31A	(4) $3 / 0$ AWG- 500 kcmil Al or Cu AL1200P24K
			1200 A	P()A36120U31A	
	LSI	5.0	250 A	$\mathrm{P}($)A36025(C)U33A	(3) $3 / 0$ AWG- 500 kcmil Al or CuAL800M23K
			400 A	P()A36040(C)U33A	
			600 A	P()A36060(C)U33A	
			800 A	$\mathrm{P}($) A 36080 (C) U 33 A	
			1000 A	P()A36100U33A	(4) 3/0 AWG-500 kcmil Al or CuAL1200P24K
			1200 A	$\mathrm{P}($)A36120U33A	
MicroLogic Interchangeable Ammeter Trip Unit	LI	3.0A	250 A	$\mathrm{P}($) A36025(C)U41A	(3) $3 / 0 \mathrm{AWG}-500 \mathrm{kcmil} \mathrm{Al}$ or Cu AL800M23K
			400 A	$\mathrm{P}($)A36040(C) U 41 A	
			600 A	P()A36060(C)U41A	
			800 A	P()A36080(C) U41A	
			1000 A	P()A36100U41A	(4) $3 / 0$ AWG- 500 kcmil Al or Cu AL1200P24K
			1200 A	$\mathrm{P}($)A36120U41A	
	LSI	5.0A	250 A	P ()A36025(C) U 43 A	(3) $\underset{\text { AL }}{\text { AL } 800 \mathrm{M} 23 \mathrm{~K}} \mathrm{AWG}$. Fl or Cu
			400 A	$\mathrm{P}($) A 36040 (C) U 43 A	
			600 A	P()A36060(C)U43A	
			800 A	$\mathrm{P}($) A 36080 (C) U 43 A	
			1000 A	P()A36100U43A	(4) $3 / 0$ AWG- 500 kcmil Al or Cu AL1200P24K
			1200 A	P()A36120U43A	
	LSIG	6.0A	250 A	$\mathrm{P}($) A36025(C)U44A	(3) $3 / 0 \mathrm{AWG-500} \mathrm{kcmil} \mathrm{Al}$ or Cu
			400 A	$\mathrm{P}($) A 36040 (C) U 44 A	
			600 A	$\mathrm{P}($) A 36060 (C) U 44 A	
			800 A	P()A36080(C)U44A	
			1000 A	$\mathrm{P}($) A 36100 U 44 A	(4) $3 / 0$ AWG- 500 kcmil Al or Cu AL1200P24K
			1200 A	P ()A36120U44A	
MicroLogic Interchangeable Power Trip Unit	LSI	5.0P	250 A	P()A36025(C)U63AE1	(3) $3 / 0$ AWG- 500 kcmil Al or CuAL800M23K
			400 A	P()A36040(C)U63AE1	
			600 A	P()A36060(C)U63AE1	
			800 A	P()A36080(C)U63AE1	
			1000 A	P ()A36100U63AE1	(4) $3 / 0$ AWG- 500 kcmil Al or Cu AL1200P24K
			1200 A	P ()A36120U63AE1	
	LSIG	6.0P	250 A	$\mathrm{P}($)A36025(C)U64AE1	(3) $\underset{\text { AL }}{\text { A } 800 \mathrm{M} 23 \mathrm{~K}} \mathrm{~K}$ Al or Cu
			400 A	P()A36040(C)U64AE1	
			600 A	P()A36060(C)U64AE1	
			800 A	P()A36080(C)U64AE1	
			1000 A	P()A36100U64AE1	$\begin{aligned} & \text { (4) 3/0 AWG-500 kcmil Al or Cu } \\ & \text { AL1200P24K } \end{aligned}$
			1200 A	P ()A36120U64AE1	
MicroLogic Interchangeable Harmonic Trip Unit	LSI	5.0 H	250 A	P()A36025(C)U73AE1	(3) $3 / 0$ AWG- 500 kcmil Al or Cu AL800M23K
			400 A	P()A36040(C)U73AE1	
			600 A	P()A36060(C)U73AE1	
			800 A	P()A36080(C)U73AE1	
			1000 A	P() A 36100 U 3 AE 1	(4) $3 / 0$ AWG-500 kcmil Al or Cu AL1200P24K
			1200 A	P ()A36120U73AE1	

[71] To complete the catalog number, replace the blank () with the appropriate interrupt rating (G, J, K, or L).
[72] For 100% rated circuit breakers add a " C " in the 9 th character place. For example, the catalog number for a 100% standard-type trip unit with LI trip functions at 250 A would be PGA36025CU31A.
[73] The L interrupt rating is supplied in 480 V only. Change the $5^{\text {th }}$ character (voltage rating) from a $6(600 \mathrm{~V})$ to a $4(480 \mathrm{~V})$; for example, PLA34025U31A.
[74] See Table 9.142 PowerPacT P- and R-frame Interrupt Ratings, page 9-62 for interrupt ratings.

Table 9.143 PowerPacT P-frame 1200 A ($600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$) 3P Circuit Breaker with Electronic Trip Unit(PowerPacT P-frame circuit breakers utilize 9 in . of the available I-Line bussing.) (cont'd.)

Electronic Trip Unit			Sensor Rating	Cat. No.[75][76][77][78]	Terminal Wire Range
Type	Function	Code			
	LSIG	6.0 H	250 A	P()A36025(C)U74AE1	(3) $3 / 0$ AWG- 500 kcmil Al or Cu AL800M23K
			400 A	P ()A36040(C)U74AE1	
			600 A	P()A36060(C)U74AE1	
			800 A	P()A36080(C)U74AE1	
			1000 A	P()A36100U74AE1	(4) $3 / 0$ AWG- 500 kcmil Al or Cu
			1200 A	P()A36120U74AE1	

Table 9.144: PowerPacT R-frame 1200 A ($600 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$) 3P Circuit Breaker with Electronic Trip Unit

Electronic Trip Unit			Sensor Rating	Cat. No. [75][76][77][78]	Termina Wire Range
Type	Function	Code			
Basic Electronic Trip Unit (Not Interchangeable)	Fixed Long-Time, Adjustable Instantaneous	ET1.01	1200 A	R()A36120	AL1200R53K (4) $3 / 0-600 \mathrm{kcmil}$ Al or Cu
MicroLogic Interchangeable Standard Trip Unit	LI	3.0	1000 A	R()A36100CU31A	
			1200 A	R()A36120CU31A	
	LSI	5.0	1000 A	R()A36100CU33A	
			1200 A	R()A36120CU33A	
MicroLogic Interchangeable Ammeter Trip Unit	LI	3.0A	1000 A	R()A36100CU41A	
			1200 A	R()A36120CU41A	
	LSI	5.0 A	1000 A	R()A36100CU43A	
	LSI	5.0A	1200 A	R()A36120CU43A	
	LSI	6.0 A	1000 A	R()A36100CU44A	
	LSI	6.0A	1200 A	R()A36120CU44A	
MicroLogic Interchangeable Power Trip Unit	LSI	5.0P	1000 A	R()A36100CU63AE1	
			1200 A	R()A36120CU63AE1	
	LSIG	6.0P	1000 A	R()A36100CU64AE1	
			1200 A	R()A36120CU64AE1	
MicroLogic Interchangeable Harmonic Trip Unit	LSI	5.0 H	1000 A	R()A36100CU73AE1	
			1200 A	R()A36120CU73AE1	
	LSIG	6.0H	1000 A	R()A36100CU74AE1	
			1200 A	R()A36120CU74AE1	

P - and R -frame accessories, page 7-51.
P- and R-frame dimensions, Molded Case Circuit Breaker Dimensions, page 7-83.
P- and R-frame trip unit options, MicroLogic ${ }^{T M}$ Electronic Trip Units, page 7-61.
P - and R -frame optional lugs, Mechanical Lugs, page 7-56.
P - and R -frame alternate rating plugs, MicroLogic ${ }^{\top \mathrm{TM}}$ Electronic Trip Units, page 7-61.

I-Line ${ }^{\text {TM }}$ Factory Assembled Panelboards

Table 9.145: I-Line 200\% Rated Neutral—Standard Terminal Configuration

Panel Type	Ampacity	Type	Branch Space		Neutral Terminals Quantity and Size		Type 1 Enclosure					
			In.	mm	Main	Branch	H		W		D	
							In.	mm	In.	mm	In.	mm
HCJ	600 A	MLO	72	1829	(8) 750 kcmil	$\begin{aligned} & \text { (35) } 350 \mathrm{kcmil}, \\ & \text { (9)\#14-1/0, (17)\#14-\#4 } \end{aligned}$	91	2311	32	813	9.50	210
	600 A (MG, MJ)	M/B	72	1829	(8) 750 kcmil		91	2311	32	813	9.50	241
	800 A	MLO	72	1829	(8) 750 kcmil		91	2311	32	813	9.50	210
	800 A (MG, MJ)	M/B	72	1829	(8) 750 kcmil		91	2311	32	813	9.50	241
$\begin{gathered} \hline \text { HCR-U } \\ {[75]} \\ \hline \end{gathered}$	1200A	M/B, MLO	108	2743	(8) 750 kcmil	$\begin{gathered} \text { (8) } 600 \mathrm{kcmil},(15) 350 \mathrm{kcmil} \\ \text { (9) \#14-1/0, (17)\#14-\#4 } \end{gathered}$	86	2184	44	1118	9.50	241
HCP	600A	M/B, MLO	63	1600	(8) 750 kcmil	$\begin{gathered} \text { (35) } 350 \text { kcmil, } \\ \text { (9)\#14-1/0, (17)\#14-\#4 } \end{gathered}$	68	1727	42	1067	9.50	241
	800A	M/B, MLO	99	2515	(8) 750 kcmil	$\begin{gathered} \text { (35) } 350 \mathrm{kcmil}, \\ \text { (9)\#14-1/0, (17)\#14-\#4 } \end{gathered}$	86	2184	42	1067	9.50	241
$\begin{gathered} \hline \text { HCP-SU } \\ \hline 76] \end{gathered}$	800A	M/B, MLO	54	1371	(8) 750 kcmil	$\begin{gathered} \text { (8) } 750 \mathrm{kcmil}, \text { (21) } 350 \mathrm{kcmil}, \\ \text { (9) } \# 14-1 / 0,(17) \# 14-\# 4 \\ \hline \end{gathered}$	86	2184	26	660	9.5	241

QMB/QMJ Fusible Panelboards Switch
Units-600 Vac, 250 Vdc

For QMB/QMJ Panelboards and Switchboards

Table 9.146: QMB Branch Switch Units

Unit Ampere Rating	Unit Height (In.)	Catalog Number	Class R Fuse Kits		Electrical Interlock Kit Catalog Number [2]	Horsepower Ratings [1]												
			No Kits Req' d.	Catalog Number		240 Vac				480 Vac				600 Vac				$\begin{aligned} & 250 \\ & \text { Vdc } \end{aligned}$
						Std.		Max.		Std.		Max.		Std.		Max.		
						$1 \varnothing$	$3 \varnothing$	$1 \varnothing$	3ø	$1 \varnothing$	$3 \varnothing$							
2-pole, $240 \mathrm{Vac}, 250 \mathrm{Vdc}$																		
$30 \mathrm{~A}-30 \mathrm{~A}$	4.5	QMB221TW	2	HRK30	QMB300EK (1 or 2)	1.5	3	3	7.5	-	-	-	-	-	-	-	-	5
30 A-Blank		QMB221HW [3]	1							-	-	-	-	-	-	-	-	5
$60 \mathrm{~A}-60 \mathrm{~A}$		QMB222TW		QMB36R	QMB300EK (1 or 2)	3	7.5	10	15	-	-	-	-	-	-	-	-	10
60 A-Blank		QMB222HW [3]								-	-	-	-	-	-	-	-	10
$100 \mathrm{~A}-100 \mathrm{~A}$	6	QMB223TW		QMB100R	QMB610EK (1 or 2)	7.5	15	15	30	-	-	-	-	-	-	-	-	20
100 A-Blank		QMB223HW [3]								-	-	-	-	-	-	-	-	
200 A	9	QMB224W		HRK1020	QMB200EK (1 or 2)	-	25	15	60	-	-	-	-	-	-	-	-	40
400 A	15	QMB225W		QMB4060R	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9	QMB225WT3 [4]		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
600 A	Use 3-pole devices for 2-pole application.					-	-	-	-	-	-	-	-	-	-	-	-	-
3 -pole, 240 Vac																		
$30 \mathrm{~A}-30 \mathrm{~A}$	4.5	QMB321TW	2	HRK30	QMB300EK (1 or 2)	-	3	-	7.5	-	-	-	-	-	-	-	-	-
30 A-Blank		QMB321HW [3]	1			-		-		-	-	-	-	-	-	-	-	-
$60 \mathrm{~A}-60 \mathrm{~A}$		QMB322TW		QMB36R		-	7.5	-	15	-	-	-	-	-	-	-	-	-
60 A-Blank		QMB322HW [3]				-		-		-	-	-	-	-	-	-	-	-
$100 \mathrm{~A}-100 \mathrm{~A}$	6	QMB323TW		QMB100R	QMB610EK (1 or 2)	-	15	-	30	-	-	-	-	-	-	-	-	-
100 A-Blank		QMB323HW [3]				-		-		-	-	-	-	-	-	-	-	-
200 A	9	QMB324W		HRK1020	QMB200EK (1 or 2)	-	25	-	60	-	-	-	-	-	-	-	-	-
400 A	15	QMB325W		QMB4060R	-	-	50	-	125	-	-	-	-	-	-	-	-	-
	9	$\underset{[4]}{\substack{\text { QMB325WT3 } \\ \hline}}$	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
600 A	15	QMB326W	1	QMB4060R	-	-	75	-	150	-	-	-	-	-	-	-	-	-
		QMB326WT3 [4]	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
800 A		QMB327WT3 [4]	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-
2-pole, 600 Va	250 Vdc																	
$30 \mathrm{~A}-30 \mathrm{~A}$	4.5	QMB261TW	1	QMB36R			-		-						-		-	
30 A-Blank		QMB261HW [3]		QMB36R	QMB300EK (1 or 2)	1.5	-	3	-	3	5	7.5	15	3	-	10	-	5
$60 \mathrm{~A}-60 \mathrm{~A}$		QMB262TW			QMB610EK (1 or 2)	3	-	10	-	5	15	20	30	10	-	25	-	10
60 A-Blank		QMB262HW [3]		QMB60R			-		-						-		-	
$100 \mathrm{~A}-100 \mathrm{~A}$	6	QMB263TW	2	HRK1020		7.5	-	15	-	10	25	30	60	15	-	40	-	20
100 A-Blank		QMB263HW [3]					-		-			-	-	-	-	-	-	
200 A	9	QMB264W	1	HRK1020	QMB200EK (1 or 2)	15	-	-	-	25	50	50	125	30	-	50	-	40
400 A	Use 3-pole devices for 2-pole application.																	
600 A					-	-	-	-	-	-	-	-	-	-	-	-	-	-
3-pole, $600 \mathrm{Vac}, 250 \mathrm{Vdc}[5]$																		
$30 \mathrm{~A}-30 \mathrm{~A}$	4.5	QMB361TW	1	QMB36R	QMB300EK (1 or 2)	-	3	-	7.5	-	5	-	15	-	7.5	-	20	-
		QMJ361T	-	-		-	-	-	-	-	-	-	-	-	-	-	20	5
30 A-Blank		QMB361HW [3]	1	QMB36R		-	3	-	7.5	-	5	-	15	-	7.5	-	20	-
60 A-60 A	6	QMB362TW		QMB60R	QMB610EK (1 or 2)	-	7.5	-	15	-	15	-	30	-	15	-	50	-
$60 \mathrm{~A}-60 \mathrm{~A}$		QMJ362T	-	-		-	-	-	-	-	-	-	-	-	-	-	-	10
60 A-Blank		QMB362HW [3]		QMB60R		-	7.5	-	15	-	15	-	30	-	15	-	50	-
$60 \mathrm{~A}-30 \mathrm{~A}$		QMB362T21W	1	$\begin{gathered} \hline \text { QMB60R and } \\ \text { QMB36R } \\ \hline \end{gathered}$		-	-	-	-	-	-	-	-	-	-	-	-	-
	7.5	QMB363TW	2	HRK1020		-	15	-	30	-	25	-	60	-	30	-	75	-
$100 \mathrm{~A}-100 \mathrm{~A}$	6	QMJ363T	-	-		-	-	-	-	-	-	-	-	-	-	-	-	20
100 A-Blank	7.5	QMB363HW [3]	1	HRK1020		-	15	-	30	-	25	-	60	-	30	-	75	-
	6	QMJ363H [3]	-	-		-	-	-	-	-	-	-	-	-	-	-	-	20
$100 \mathrm{~A}-30 \mathrm{~A}$	7.5	QMB363T31W	1	QMB36R														
$100 \mathrm{~A}-60 \mathrm{~A}$		QMB363T32W		QMB60R		-	-	-	-	-	-	-	-	-	-	-	-	-
200 A	9	QMB364W	1	HRK1020	QMB200EK (1 or 2)	-	25	-	60	-	50	-	125	-	60	-	150	-
$200 \mathrm{~A}-200 \mathrm{~A}$	7.5	QMJ364T	-	-	QMB610EK (1 or 2)	-	25	-	60	-	50	-	125	-	60	-	150	40
200 A-Blank		QMJ364H [3]		-		-	-	-	-	-	-	-	-	-	-	-	-	-
400 A [6]	15	QMB365W	1	QMB4060R	-	-	-	-	-	-	100	-	250	-	125	-	350	50
400 A	9	QMJ365	-	-	QMB200EK (1 or 2)	-	50	-	125	-	100	-	250	-	125	-	350	50
400 A [6]		QMB365WT6 [7]		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
600 A [6]	15	QMB366W	1	QMB4060R	-	-	-	-	-	-	150	-	400	-	250	-	500	-
600 A		QMJ366	-	-	-	-	75	-	150	-	-	-	-	-	-	-	-	-
800 A		QMB367W		-	-	-	-	-	-	-	150	-	400	-	250	-	500	-

NOTE: See the Supplemental Digest for merchandised motor starter units, QMB RTI panelboards, and replacement switches for Series 1-4 and D2 QMB panelboards.
NOTE: For series E1 and E2, QMJ switches may be used in 400 A-1200 A interiors in a NEMA 1 without door only. QMJ switches cannot be used in series E1 and E2, 225 A panelboards. QMJ switches cannot be used in NEMA 1 with door or any NEMA 3R/12 enclosure.

[^4]Refer to Catalog 4620CT9601
Fusible-600 Vac, 250 Vdc
Table 9.147: Available QMB Accessories

Electrical Interlocks		
1 NO and 1NC Electrical Interlocks on Main Switches		
2NO and 2NC Electrical Interlocks on Main Switchs		
Equipment Ground Bars		
Standard Ground Bar		
Copper Ground Bar		
Insulated/Isolated Ground Bar		
Name Plates		
Copper Neutral		
Copper Neutral		
125-400A		
600A		
800A		
Enclsoure Modifications		
Hinged Trim		
Weatherproof - NEMA 3R		
Lugs		
Mechanical Lugs - Standard		
Copper Mechanical Lugs		
Copper Compression Lugs		
Aluminum Compression Lugs		
VCEL Lugs		
UL Listed Short Circuit Ratings for QMB Starters		
Starter Size	Fusible switch-600V Max. (with Class R or J Fuses) RMS Sym. Amps	Thermal-Magnetic Bircuit Breaker 600V Max. Rms Sym. Amps
0	100,000	5,000
1	100,000	5,000
2	100,000	5,000
3	100,000	5,000

Common Features

QMB Layout Information
To maximize the quantity of branch switches, use QMJ switches from page 9-65. Class J fuses are available in time delay construction suitable for motor and transformer loads.

Table 9.148: I-Line ${ }^{\text {TM }}$ Panelboard Split Bus Bars

Ampacity MLLO	Additional Mounting Height Required On Split Bus Section [8]
	Split Bus
225 A	7.5 in.
400 A	9 in.
600 A	12 in.
800 A	12 in.
1200 A	18 in.

NOTE: For applications with main circuit breaker panelboards, contact your local Schneider Electric representative or distributor.

Main Circuit Breaker Without Overload Trip (Automatic Molded Case Switch)
 - (Not UL Listed)
 Shunt Trip Circuit Breakers
 Special Features

For information on the following special features, please see the Supplemental and Obsolescence Digest.

- Powerlogic ${ }^{\text {TM }}$ metering $[1]$
- Customer equipment space (NQ and NF) [1]
- Increased box depth [1]
- Increased gutters-top, bottom, and sides [1]
- Non-standard paint [1]
- Welded base channel [1]
- Type 1 gasketed [1]
- Type 2 drip hood [1]
- Type 3R/4/4X/5/12 stainless steel enclosure [1]
- Type 4X fiberglass enclosure ${ }_{[1]}$
- Stainless steel trim front ${ }^{11}$
- Padlockable hasp [1]
- Special locks (Corbin, Yale, Best) ${ }^{[1]}$
- Equal height boxes [1]
- Common trim to cover two equal height boxes [1]
- Panelboard skirt—hides conduits feeding a panelboard [1]
- Panelboard wireway-for terminating conduit in wireway endwall [1]
- Keyed mechanical interlocking of two or more circuit breakers (I-Line and QMB) [1]
- Motor operators (I-Line only)
- Panelboard interiors and special fronts to fit existing boxes
- A standard panelboard box has one blank endwall and one with knockouts. Blank endwalls or knockouts in both endwalls are also available [1]

Space-saving I-Line Smart Cell

Space-saving module for value-added digital solutions. The modular Square D I-Line Smart Cell enables value-added solutions in I-Line panelboards in a variety of combinations. The space-saving, self-contained unit fits onto the I-Line bus in place of a breaker, and allows the I-Line panelboard to be transformed into a digital communication or metered electrical distribution solution.
Smart Cells are available for:

- IFE Ethernet Modbus TCP interface with basic Web pages
- IFM Modbus serial interface
- Energy Reduction Maintenance Setting (ERMS)
- Maintenance Mode Switch (MMS)
- EM3560, PM5563 or PM8244 meter with or without communications
- Gateway \& Data Logger

The I-Line Smart Cell assemblies are intended for use in HCP, HCP-SU, and HCR-U ILine panelboards. The I-Line Smart Cell can be included in your Square D I-Line factoryassembled equipment or ordered individually for field installations such as Retrofit or RTI.
For more information refer to Handout (2700HO1501) or User Guide (NHA999570).
For Surgelogic ${ }^{\text {TM }}$ I-Line plug-on SPD information, starting on Digest page .For fieldinstallable l-Line door kits, see the Supplemental and Obsolescence Digest, Section 4.

Refer to Catalog 1670CT0701, 1640CT0801

NQ and NF Terminal Data

Table 9.149: NQ Standard Aluminum Mechanical Lugs-Main Lugs

Panel Type	Ampere Rating	Part Number	Lug Wire Range[2]
NQ	100 A	NQALM1	(1) \#6-2/0 Al or Cu
	225 A	NQALM2	(1) \#6-350 kcmil Al or Cu
	400 A	NQALM4	(1) $1 / 0-750 \mathrm{kcmil} \mathrm{Al}$ or Cu or (2) $1 / 0-350 \mathrm{kcmil} \mathrm{Al}$ or Cu
	600 A	NQALM6	(2) $1 / 0-750 \mathrm{kcmil} \mathrm{Al}$ or Cu
		NQALM6A	(1) $1 / 0-750 \mathrm{kcmil} \mathrm{Al}$ or Cu or (3) 250 kcmil Al-Cu

Table 9.151: NF Standard Mechanical Lugs-Main Lugs

Panel Type	Ampere Rating	Part Number	Lug Wire Range[2]
NF	125 A	NFALM1	(1) \#6-2/0 Al or Cu
	250 A	NFALM2	(1) \#6-350 kcmil Al or Cu
	400 A	NFALM4	(1) \#1/0-750 kcmil or (2) \#1/0-350 kcmil Al or Cu
	600 A	NFALM6	(2)1/0-750 kcmil Al or Cu
	800 A	NFALM8	(3) $1 / 0-750 \mathrm{kcmil}$ Al or Cu

Table 9.150: NQ Standard Aluminum Mechanical Lugs-Main Circuit Breaker

Panel Type	Ampere Rating	Circuit Breaker Type	Lug Wire Range [3][2]
NQ	100 A	QOB	(1) \#4-\#2/0 Al or Cu
	150 A	$\begin{aligned} & \text { HD, } \\ & \underset{H L}{H L}, ~ H J, ~ \end{aligned}$	(1) \#14-\#3/0 Al or Cu
	225 A	$\begin{gathered} \text { QB, QD, QG, } \\ \text { QJ } \end{gathered}$	(1) \#4-300 kcmil Al or Cu
	250 A	$\underset{\substack{\text { JD, JG, JJ, } \\ \mathrm{JL}}}{ }$	(1) \#3/0-350 kcmil Al or Cu [3]
	400 A	LA, LH	(1) \#1-600 kcmil Al or Cu or (2) \#1-250 kcmil Al or Cu
	600 A	$\begin{aligned} & \text { LD, LG, LJ, } \\ & \hline \text { LL } \end{aligned}$	(2) \#4/0-500 kcmil Al or Cu

Table 9.152: NF Standard Mechanical Lugs—Main Circuit Breaker

Panel Type	Ampere Rating	Circuit Breaker Type	Lug Wire Range [3][2]
NF	125 A	ED, EG, EJ	(1)\#14-\#2/0 Al or Cu
	150 A	HD, HG, HJ, HL	(1) \#14-\#3/0 Al or Cu
	250 A	JD, JG, JJ, JL	(1) \#3/0-350 kcmil Al or Cu [3]
		DJ	(1) \#2-600 Cu or \#2-500 Al
	400 A	LA, LH	(1) \#1-600 kcmil or (2) \#1-250 kcmil Al or Cu
	600 A	$\begin{gathered} \text { LD, LG, LJ, LL, } \\ \text { LR } \end{gathered}$	(2) \#4/0-500 kcmil Al or Cu

I-Line and QMB/QMJ Terminal Data

Table 9.153: Standard Mechanical Lugs-Main Lugs

Panel Type	Ampere Rating	Wire Range Wire Bending Space per NEC Table 312-6 [2]
I-Line	100 A	-
	225 A	(1) \#6-300 kcmil Al or Cu
	400 A	(1) \#2-600 kcmil Al or Cu (2) \#2-500 kcmil Al or Cu
	600 A	(2) \#2-500 kcmil Al or Cu
	800 A	(3) $3 / 0-500 \mathrm{kcmil} \mathrm{Al}$ or Cu
	1200 A	(4) $3 / 0-500 \mathrm{kcmil} \mathrm{Al}$ or Cu

Table 9.155: Standard Mechanical Lugs-Main Lugs

Panel Type	Mains Ampere Rating	Wire Range Wire Bending Space per NEC Table 312-6 [2]
QMB	225 A	(1) \#6-300 kcmil Al or Cu
	400 A	(1) $3 / 0-500 \mathrm{kcmil}$ Al or CU and, (1) $3 / 0-750 \mathrm{kcmil} \mathrm{Al}$ or Cu
	600 A	(2) $3 / 0-500 \mathrm{kcmil} \mathrm{Al}$ or Cu
	800 A	(3) $3 / 0-500 \mathrm{kcmil} \mathrm{Al}$ or Cu or (2) $3 / 0-750 \mathrm{kcmil} \mathrm{Al}$ or Cu
	1200 A	(4) $3 / 0-500 \mathrm{kcmil}$ Al or Cu or (4) $3 / 0-750 \mathrm{kcmil}$ Al or Cu
	1600 A	VCEL compression lugs Standard.

Table 9.157: Standard Mechanical Lugs—QMB Branch Switch Units

Panel Type	Switch Ampere Rating	Wire Range
QMB	30 A	Wire Bending Space per NEC Table 312-6 [2]

Table 9.154: Standard Mechanical Lugs-Main Circuit Breaker

$\begin{aligned} & \text { Panel } \\ & \text { Type } \end{aligned}$	Ampere Rating	Circuit Breaker Type	Wire Range Wire Bending Space per NEC Table 312-6 [2]
I-Line	125 A	BD, BG, BJ	(1)\#14-\#2/0 AWG Al or Cu
	150 A	HD, HG, HJ, HL	(1) \#14-3/0 Al or Cu
	250 A	JD, JG, JJ, JL	(1) \#1/0-300 kcmil Al or Cu
	400 A	LA, LH	(1) \#1-600 kcmil Al or Cu
	800 A	MG, MJ, PG, PJ, PL	(3) $3 / 0-500 \mathrm{kcmil} \mathrm{Al} \mathrm{or} \mathrm{Cu}$
	1200 A	$\begin{aligned} & \text { PG, PJ, PL, RGC, } \\ & \text { RJC, RLC } \end{aligned}$	(4) $3 / 0-500 \mathrm{kcmil} \mathrm{Al}$ or Cu

Table 9.156: Standard Mechanical Lugs-Main Switch

Panel Type	Mains Ampere Rating	Wire Bending Space pange NEC Table 312-6 [2]
QMB	200 A	(1) \#4-300 kcmil Al or Cu
	400 A	(1) $3 / 0-600 \mathrm{kcmil}$ Al or Cu
	600 A	(2) $3 / 0-600 \mathrm{kcmil}$ Al or Cu
	800 A	(3) $3 / 0-500 \mathrm{kcmil}$ Al or Cu

Table 9.158: Standard Mechanical Lugs—QMJ Branch Switch Units [4]

Panel Type	Switch Ampere Rating	Wire Bending Space per NEC Table 312-6 [2]
QMJ	30 A	(1) \#14-\#2 Al or Cu
	60 A	(1) \#14-\#2 Al or Cu
	100 A	(1) \#14-1/0 Al or Cu
	200 A	(1) $\# 6-300 \mathrm{kcmil} \mathrm{Al} \mathrm{or} \mathrm{Cu}$
	400 A	(1) $1 / 0-750 \mathrm{kcmil} \mathrm{Al} \mathrm{or} \mathrm{Cu}$
	600 A	(2) $3 / 0-600 \mathrm{kcmil} \mathrm{Al}$ or Cu

[^5]
[^0]: [1] Series Ratings listed at higher system voltages apply to lower system voltages (Example: 240 3P/3W covers 208Y/120 3P/4W).

[^1]: [1]

[^2]: [1] $X=$ Supported feature.
 [2] 7.5 mA maximum load per input terminal.
 [3] UL listed as SWD (switching duty) rated.
 [4] Rated for 240 Vac only - 42,000 AIR

[^3]: L-frame accessories, page 7-51
 M-frame accessories, page 7-51
 L-frame dimensions, page 7-83.
 M-frame dimensions, page 7-83
 M-frame optional lugs, page 7-56

[^4]: [1] Horsepower rating applicable to $480 \mathrm{Y} / 277 \mathrm{~V}$ system only.
 [2] "1" indicates one normally open and one normally closed contact.
 " 2 " indicates two normally open and two normally closed contacts.
 [3] Blank units cannot be modified to accept a switch interior.
 [4] Use 300 Vac Class T fuses only.
 [5] Class J fuse provisions-to field modify switch, move load side fuse base to position indicated in switch. Not available on 100-30, 100-60, or 800 A switch units.
 [6] 250 Vdc rating.
 [7] Use 600 Vac Class T fuses only.

[^5]: [2] (\#) = Number of conductors per phase.
 [3] The lug range shown is for the highest amperage of the circuit breaker frame shown in the table.
 [4] Use only $90^{\circ} \mathrm{C}$ insulated conductors based on an ampacity of $75^{\circ} \mathrm{C}$ conductors.

